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1. Introduction

ABSTRACT

The economically important soapberry family (Sapindaceae) comprises about 1900 species mainly found
in the tropical regions of the world, with only a few genera being restricted to temperate areas. The inf-
rafamilial classification of the Sapindaceae and its relationships to the closely related Aceraceae and Hip-
pocastanaceae — which have now been included in an expanded definition of Sapindaceae (i.e., subfamily
Hippocastanoideae) - have been debated for decades. Here we present a phylogenetic analysis of Sapind-
aceae based on eight DNA sequence regions from the plastid and nuclear genomes and including 85 of the
141 genera defined within the family. Our study comprises 997 new sequences of Sapindaceae from 152
specimens. Despite presenting 18.6% of missing data our complete data set produced a topology fully
congruent with the one obtained from a subset without missing data, but including fewer markers.
The use of additional information therefore led to a consistent result in the relative position of clades
and allowed the definition of a new phylogenetic hypothesis. Our results confirm a high level of para-
phyly and polyphyly at the subfamilial and tribal levels and even contest the monophyletic status of sev-
eral genera. Our study confirms that the Chinese monotypic genus Xanthoceras is sister to the rest of the
family, in which subfamily Hippocastanoideae is sister to a clade comprising subfamilies Dodonaeoideae
and Sapindoideae. On the basis of the strong support demonstrated in Sapindoideae, Dodonaeoideae and
Hippocastanoideae as well as in 14 subclades, we propose and discuss informal groupings as basis for a
new classification of Sapindaceae.

© 2009 Elsevier Inc. All rights reserved.

very first worldwide treatment of Sapindaceae sensu stricto (s.s.)
(including subfamilies Sapindoideae and Dodonaeoideae) pro-

The soapberry family (Sapindaceae: Sapindales) comprising c.
1900 species (Acevedo-Rodriguez, personal communication), has
a predominantly pantropical distribution with the occurrence of
some taxa in temperate areas (e.g., Acer, Aesculus, Atalaya, Diplopel-
tis, Dodonaea). Sapindaceae include many economically important
species used for their fruits [e.g., guarana (Paullinia cupana), litchi
(Litchi chinensis), longan (Dimocarpus longan), pitomba (Talisia escu-
lenta) and rambutan (Nephelium lappaceum)], wood [e.g., buckeyes
(Aesculus)] or as ornamentals (Koelreuteria, Ungnadia).

The circumscription of the family as well as the relationships
among subfamilial entities have been widely challenged since the
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posed by Radlkofer (1890, 1933; for a review see Harrington
et al., 2005). For instance, several genera within the Sapindoideae
(e.g., Tinopsis and Plagioscyphus from Madagascar; Capuron, 1969)
were shown to be morphologically transitional between tribes de-
scribed by Radlkofer (1933), which prevented the recognition of
unequivocal tribes. Within Sapindaceae s.s. the higher taxonomic
entities (subfamilies and tribes) were originally defined by Radlko-
fer (1933) based on the number and type of ovules per locule, the
fruit morphology, the presence or not of an arillode, the leaf type
and the cotyledon shape. On the basis of macromorphological
and palynological characters, Miiller and Leenhouts (1976) revised
the classification of Radlkofer (1933). They recognized eight major
pollen types (A-H) and several subtypes (e.g., type-Al), mainly
based on their shape and characteristics of the aperture (Fig. 1).
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Fig. 1. Schematic representation of pollen types in Sapindaceae following Miiller
and Leenhouts (1976). See text for explanations regarding the morphological
differentiation between pollen types.

The pollen grains in Sapindaceae are triporate [the diporate type-D
pollen of Lophostigma recognized by Miiller and Leenhouts (1976)
was wrongly identified; see Acevedo-Rodriguez (1993a)]. Spherical
pollen shape occurs in the majority of species (e.g., types A, B and
H), whereas a triangular (type-C) or oblate (type-A1) shape is more
restricted. The colpi may be absent (e.g., type-G) or parasyncolpo-
rate (e.g., type-A) to syncolporate (e.g., type-B) (Fig. 1). Based on
those characters Miiller and Leenhouts (1976) rearranged the nine
tribes of Sapindoideae recognized by Radlkofer (1933) into three
taxonomically unranked groups characterized by their distribu-
tion, the presence or absence of an arillode surrounding the seed
and the pollen types [i.e., group A comprised Sapindeae, Lepisan-
theae (incl. Aphanieae) and Melicocceae; group B comprised
Schleichereae, Nephelieae and Cupanieae; group C comprised Paul-
linieae and Thouinieae]. They did not, however, modify the classi-
fication within the Dodonaeoideae and maintained the five tribes
described by Radlkofer (i.e., Cossinieae, Dodonaeeae, Doratoxyleae,
Harpullieae and Koelreuterieae, 1933). Furthermore, Miiller and

Leenhouts (1976) kept the predominantly temperate families Acer-
aceae and Hippocastanaceae separate from the rest of Sapindaceae.
The circumscription of Sapindaceae has been debated ever since.
Takhtajan (1987), Cronquist (1988) and Dahlgren (1989) main-
tained Aceraceae and Hippocastanaceae separate from Sapinda-
ceae, whereas broader concepts of the family have been adopted
by several workers (e.g., Umadevi and Daniel, 1991; Judd et al,,
1994; Gadek et al., 1996; Savolainen et al., 2000; Thorne, 2000,
2007; APGIIL, 2003).

Building on a large-scale molecular phylogenetic analysis of
Sapindales (Gadek et al., 1996), Harrington et al. (2005) published
the first molecular phylogeny of Sapindaceae sensu lato (s.l.)
(including Aceraceae and Hippocastanaceae) inferred from the
plastid genes rbcL and matK. Their phylogeny recognized the sub-
division of Sapindaceae s.l. into four supported lineages, a mono-
typic Xanthoceroideae, Hippocastanoideae (including Aceraceae,
Hippocastanaceae and Handeliodendron), a more narrowly defined
Dodonaeoideae and Sapindoideae (including Koelreuteria and
Ungnadia). Relationships between these four lineages remained
weakly supported. Confirming previous works based on morpho-
logical features, Harrington et al. (2005) highlighted the paraphy-
letic or polyphyletic nature of several tribes described by
Radlkofer (1933).

According to the new assessment of the Sapindaceae s.l. pro-
posed by Thorne (2007; mainly based on Harrington et al., 2005)
and a broad review of currently described taxa, it is now widely ac-
cepted that the c. 1900 species of this cosmopolitan family are di-
vided into 141 genera (see Table 1; Acevedo-Rodriguez, personal
communication). Even if Harrington et al. (2005) covered world-
wide representatives of Sapindaceae s.l., the sampling (64 of the
141 genera, i.e., 45.4%) and the number of markers were not suffi-
cient to assess the relationships among and within the major lin-
eages of the family with confidence. In this study we provide a
new assessment of the phylogenetic relationships within Sapinda-
ceae s.l. based on 60.3% of the generic diversity (85 of the 141 gen-
era) and including the previously unsampled tribe Cossinieae. The
analysis is based on a combination of one nuclear (ITS region; ITS1,
5.8S, ITS2) and seven plastid (coding matK and rpoB; non coding
trnL intron and intergenic spacers trnD-trnT, trnK-matK, trnL-trnF
and trnS-trnG) markers. Coding plastid regions have proven to be
useful in addressing phylogenetic relationships at higher taxo-
nomic levels (e.g., Clayton et al.,, 2007; Muellner et al., 2006,
2007; Harrington et al., 2005), whereas noncoding regions (introns
and intergenic spacers) were shown to be more useful at lower tax-
onomic ranks (Baldwin, 1992; Soltis and Soltis, 1998). The combi-
nation of several markers from both nuclear and plastid genomes
as well as coding and non coding regions are expected to improve
the resolution of phylogenetic relationships within the family. In
this study, our objectives are (1) to examine the relationships be-
tween the traditionally defined Aceraceae and Hippocastanaceae
with the rest of Sapindaceae, (2) to evaluate the tribal concepts
of Radlkofer (1933) and Miiller and Leenhouts (1976), (3) to exam-
ine phylogenetic relationships among taxa in light of characters
traditionally used to define the higher level groupings in Sapinda-
ceae s.l. (e.g., number of ovules per locule, pollen morphology, leaf
type and presence/absence of an arillode) and (4) to propose a new
preliminary infrafamilial classification for Sapindaceae s.l.

In addition of being a challenging family at the taxonomic le-
vel, the amplification of molecular markers in Sapindaceae s.l. is
made difficult by several mutations occurring in flanking regions
of widely used plastid and nuclear regions such as matK (Harring-
ton et al., 2005) and ITS (Edwards and Gadek, 2001). Those muta-
tions complicate the compilation of multilocus data sets without
missing data. Maximizing taxa and markers representation to
provide a reliable phylogenetic hypothesis inferred from nuclear
and plastid genomes is required to propose a new classification
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Table 1

Infrafamilial classification of Sapindaceae sensu lato (Radlkofer, 1933; Miiller and Leenhouts, 1976; Thorne, 2007). Information on number of taxa, habit and distribution of
genera were taken from literature (Radlkofer, 1933; Acevedo-Rodriguez, 1993a,b, 2003; Adema et al., 1994; Ferrucci 1991, 1998; Davies, 1997; Davies and Verdcourt, 1998;
Klaassen, 1999; Thomas and Harris, 1999; Xia and Gadek, 2007; Mabberley, 2008). Abbreviations are as follows: s, shrub; st, small tree; t, tree; |, liana. Genera sampled for the
phylogenetic analysis of Sapindaceae are indicated in bold and genera found to be either paraphyletic or polyphyletic are identified by an asterisk (x).

Genera Author Taxa Habit Distribution
Sapindaceae Jussieu 104/141 genera, 205/1886 species
Dodonaeoideae Burnett Cossinieae Bl. (Cos) 2/2 Cossinia Comm. ex 4 s-st Mascarenes, New Caledonia, E Australia, Fiji
genera, 3/7 species Lam.
Llagunoa Ruiz & 3 s-st W tropical South America
Pavon
Dodonaeeae Kunth (Dod) 3/5 genera, 5/78 species Diplopeltis Endl. 5 s-t NW Australia
Distichostemon F. Muell. 6 s Australia
Dodonaea Miller Cc.65 s-st Mainly in Australia, Malesia, New Guinea, Carribean and
Madagascar
Hirania Thulin 1 s Somalia
Loxodiscus Hook. f. 1 s New Caledonia
Doratoxyleae Radlk. (Dor) 6/9 genera, 8/22 species Averrhoidium Baillon 2 t South America
Doratoxylon Thou. ex 5 st-t Madagascar and Mascarenes Islands
Hook. f.
Euchorium Eckman & 1 t Cuba
Radlk.
Exothea Macfad. 3 t West Indies, Central America and Florida
Filicium Thw ex 3 s-st E Africa, Madagascar and SE India
Hook. f.
Ganophyllum Blume 2 t W and C Africa, Andamans and Nicobars to NE Australia and
Solomon Islands to Malesia
Hippobromus Ecklon & 1 t South Africa
Zeyher
Dodonaeoideae Burnett Harpullieae Radlk. (Har) 6/6  Hypelate P. Browne 1 s-st West Indies and Florida
genera, 8/34 species Zanha Hiern 4 t Tropical Africa and Madagascar
Arfeuillea Pierre ex 1 t SE Asia
Radlk.
Conchopetalum  Radlk. 2 st-t Madagascar
Eurycorymbus Handel- 1 t China
Mazzetti
Harpullia Roxb. 26 s-st India, SE China, Malesia to Australia, New Caledonia and
Pacific Islands
Magonia A. St. Hil. 1 t South America
Majidea J. Kirk ex 3 t Tropical Africa and Madagascar
Oliver
Hippocastanoideae Burnett 5/5 genera, 18/129 Acer L. 111 s-t N temperate & tropical mountains
species Aesculus L. 13 t SE Europe, India, E Asia and N America
Billia Peyr. 2 s-t S Mexico to Tropical South America
Dipteronia Oliver 2 s-st C&S China
Handeliodendron Rehder 1 s-t China - deciduous
Sapindoideae Burnett Cupanieae Reichenb. (Cup) 36/ Amesiodendron Hu 1 t China, Indo-China and Malesia
48 genera, 79/462 species Aporrhiza Radlk. 6 t Tropical Africa
Arytera Blume c.28 s-t Indo-Malesia to E Australia and Pacific
Blighia Koenig 4 t Tropical Africa
Blighiopsis Van der 1 t Tropical Africa
Vecken
Blomia Miranda 1 t Mexico
Cnesmocarpon Adema 4 s-st Australia and Papua New Guinea
Cupania L. c.45 s-t Tropical America
Cupaniopsis” Radlk. 60 s-st Malesia, New Guinea, N-E Australia, Pacific islands, New
Caledonia
Dictyoneura Blume 3 s-st Malesia
Dilodendron Radlk. 1 t South America
Diploglottis Hook f. 12 t NE Australia and Papua New Guinea
Diplokeleba N.E. Br. 2 st South America
Elattostachys (Blume) c.20 s-t Malesia to Australia, W Pacific
Radlk.
Eriocoelum Hook. f. c.10 t Tropical Africa
Sapindoideae Burnett Cupanieae Reichenb. (Cup) Euphorianthus  Radlk. 1 t E Malesia
Gloeocarpus Radlk. 1 t Philippines
Gongrodiscus Radlk. 3 s-t New Caledonia
Gongrospermum  Radlk. 1 t Philippines
Guioa’ Cav. 65 s-t SE Asia, Malesia to E Australia; Pacific and New Caledonia
Haplocoelopsis  F.G. Davies 1 s-t E Africa
Jagera Blume 2 t New Guinea and Australia
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Table 1 (continued)
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Genera Author Taxa Habit Distribution
Laccodiscus Radlk. 4 s-st W Africa
Lepiderema Radlk. 8 t Australia and New Guinea
Lepidopetalum  Blume 7 s-t India, NE Australia and Solomon Islands
Lynchodiscus Radlk. 6 t W Tropical Africa
Matayba Aublet. c.56 s-t Tropical America
Mischarytera (Radlk.) H. Turner 3 t Australia, Papua New Guinea
Mischocarpus Blume 15 s-t SE Asia, Malesia to Australia
Molinaea Comm. ex. Juss. 9 s-t Madagascar, Mascarenes
Neotina Capuron 2 t Madagascar
Paranephelium  Miq. 4 s-t SE Asia and W Malesia
Pavieasia Pierre 3 t S China, N Vietnam
Pentascyphus Radlk. 1 t Guyana
Phyllotrichum Thorel ex Lecompte 1 t SE Asia
Pseudima Radlk. 3 t South America
Rhysotoechia Radlk. 14 s-t Australia, New Guinea, Malesia
Sarcopteryx Radlk. 12 s-t Malesia, New Guinea and E Australia
Sarcotoechia’ Radlk. 11 t NE Australia and New Guinea
Scyphonychium Radlk. 1 t NE Brazil
Sisyrolepis Radlk. 1 s-st Thailand
Storthocalyx Radlk. 4 s New Caledonia
Synima Radlk. 2 t Australia and SE New Guinea
Tina Roem. & Schult. 6 s-st Madagascar
Toechima Radlk. 7 t Australia and New Guinea
Trigonachras Radlk. 8 t Malesia
Tripterodendron  Radlk. 1 t Brazil
Vouarana Aublet. 1 t NE South America
Sapindoideae Burnett Koelreuterieae Radlk. (Koe) 2/4 Erythrophysa E. Mey ex Arnott 9 s Africa and Madagascar
genera, 2/15 species Koelreuteria Laxmann 3 t S China, Japan
Sinoradlkofera F.G. Mey 2 st China and N Vietnam
Stocksia Benth. 1 s E Iran, Afghanistan
Lepisantheae Radlk. (Lep) 4/10 genera, 7/97 species Chonopetalum Radlk. 1 t Tropical W Africa
Chytranthus Hook. f. c.30 st Africa
Glenniea Hook. f. 8 t Tropical Africa, Madagascar, Sri Lanka, Malesia
Lepisanthes Blume 24 s-t Tropical Africa, Madagascar, S-SE Asia, Malesia and
NW Australia
Namataea D.W. Thomas & DJ. 1 st Cameroon
Harris
Pancovia Willd. c.13 st Tropical Africa
Placodiscus Radlk. c.15 t Tropical W Africa
Pseudopancovia  Pellegrin 1 t Tropical W Africa
Radlkofera Gilg. 1 s-st Tropical Africa
Zollingeria Kurz 3 t SE Asia and Malesia
Melicocceae Blume (Mel) 5/5 genera, 8/67 species Castanospora F. Muell. 1 t NE Australia
Melicoccus P. Browne 10 t Tropical America
Talisia Aublet 52 s-t Tropical America
Tristira Radlk. 1 t Malesia
Tristiropsis Radlk. 3 t Pacific Ocean, Australia, Solomon Islands and
Malesia
Nephelieae Radlk. (Nep) 11/12 genera, 15/77 species Alectryon Gaertn. c.30 s-st E Malesia, Australia, New Zealand, New Caledonia,
to Hawaii
Cubilia Blume 1 t Malesia
Dimocarpus Lour. 6 s-t S and SE Asia and Australia
Litchi Sonn. 1 t Tropical China to W Malesia
Nephelium L. 22 t SE Asia and Malesia
Otonephelium Radlk. 1 t India
Sapindoideae Burnett Nephelieae Radlk. (Nep) Pappea Eckl. & Zeyh. 1 s-t Tropical E to S Africa
Podonephelium  Baillon 4 s-t New Caledonia
Pometia Forst. & Forst. 2 t Malesia and Pacific Islands
Smelophyllum Radlk. 1 t South Africa
Stadmania Lam. 6 t Tropical E Africa, S Africa, Madagascar and
Mascarenes Islands
Xerospermum Blume 2 s-st Indochinese Peninsula and Malesia
Paullinieae Kunth (Pau) 4/7 genera, 15/466 species Cardiospermum L. cl12 1 Tropical and subtropical America; 1 sp. extending
to Africa
Houssayanthus Hunz. 3 s-1 South America
Lophostigma Radlk. 2 1 South America
Paullinia L. c. 1 Tropical America and one pantropical sp.
200
Serjania Miller c. 1 Tropical America
226
Thinouia Triana & Planchon 9 1 Tropical America
Urvillea Kunth 14 1 Tropical America

(continued on next page)
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Table 1 (continued)

Genera Author Taxa Habit  Distribution
Sapindeae DC (Sap) 3/7 genera, 12/89 species Atalaya Blume 12 st Australia, New Guinea and S Africa
Deinbollia Schumach. & Thonn. 40 t Tropical Africa and Madagascar
Hornea Baker 1 s-t Mauritius
Porocystis Radlk. 2 s-t Tropical South America
Sapindus L. 13 t Tropical to warm temperate regions
Thouinidium Radlk. 7 s-t Mexico and West Indies
Toulicia Aublet 14 t South America
Schleichereae Radlk. (Sch) 8/12 genera, 12/55 species Beguea Capuron 1 t Madagascar
Bizonula Pellegrin 1 t Tropical Africa
Camptolepis Radlk. 4 t E Africa and Madagascar
Chouxia Capuron 6 s-st Madagascar
Haplocoelum™  Radlk. c.6 st-t Tropical Africa and Madagascar
Lecaniodiscus  Planch. ex Benth. 3 st Tropical Africa
Macphersonia  Blume 8 s-t Tropical E Africa and Madagascar
Plagioscyphus  Radlk. 10 st-t Madagascar
Pseudopteris Baill. 3 s Madagascar
Sapindoideae Burnett Schleichereae Radlk. (Sch) Schleichera Willd. 1 t Tropical SE Asia to Indo-China and Malesia
Tinopsis Radlk. 11 t Madagascar
Tsingya Capuron 1 t Madagascar
Thouinieae Bl. (Tho) 6/6 genera, 10/285 species Allophylus L. c.250 s-st-l  Pantropical
Athyana (Griseb.) Radlk. 1 t South America
Bridgesia Bertero ex Cambess. 1 s-st Chile
Diatenopteryx  Radlk. 2 t South America
Guindilia Hook & Arn. 3 s South America
Thouinia Poit. 28 1 Mexico and West Indies
Sapindoideae unplaced taxa 2/2 genera, 2/2 species Delavaya Franchet s-st SW China and N Vietnam
Ungnadia Endl. s-st S North America
Xanthoceroideae Thorne & Reveal 1/1 genera, 1/1 species  Xanthoceras Bunge 1 s-st N-NE China and Korea

for family Sapindaceae. This was achieved by analysing two data
sets based on the same taxa, but including different levels of
missing data (i.e., different number of markers). While the inclu-
sion of missing data was widely recognized as a major drawback
in phylogenetic analyses during the early 90s (e.g., Huelsenbeck,
1991; Wiens and Reeder, 1995), recent simulations (Wiens,
1998, 2003, 2006) and empirical analyses (Bapteste et al., 2002;
Driskell et al., 2004; Phillipe et al., 2004) have shown that taxa
comprising high levels of missing data could be accurately placed
in phylogenies. Moreover, adding incomplete taxa to a phyloge-
netic analysis was even shown to improve the accuracy of a given
topology, e.g. by subdividing misleading long branches (Wiens,
2005). However, there is a strong heterogeneity in the ability of
the different phylogenetic algorithms for managing data sets with
substantial levels of missing data (Wiens, 2006), with maximum
parsimony performing poorly compared to model-based algo-
rithms such as maximum likelihood and Bayesian inference
(Wiens, 2005, 2006).

2. Material and methods
2.1. Taxon sampling

Species names, voucher information, and GenBank accession
numbers for all sequences are provided in the Appendix. The sam-
pling strategy was designed to encompass the majority of subfam-
ilies, tribes and genera of the family as recognized by the existing
classifications of Radlkofer (1933), Miiller and Leenhouts (1976)
and Thorne (2007). Ingroup sampling comprised 152 specimens
representing 60.3% of the generic diversity (85 of the 141 genera;
28 of the 57 missing genera in this analysis are monospecific; Table
1). The outgroup included Anacardiaceae (Sorindeia sp.; defined as
outgroup in all analyses; Savolainen et al., 2000; Muellner et al.,
2007) and Simaroubaceae (Harrisonia abyssinica). Silica-gel dried
samples (Chase and Hills, 1991) were collected in the field by the
authors and complemented with materials from the DNA banks

of the Missouri Botanical Garden (St. Louis, USA), the Royal Botanic
Gardens, Kew (London, UK) and the James Cook University (Cairns,
Australia).

2.2. DNA sequencing

Samples from the collections of the Missouri Botanical Garden
and field collected samples were extracted in the laboratory of
Evolutionary Botany at the University of Neuchdtel (Switzerland)
using the QIAGEN DNeasy plant kit (Qiagen, Hilden, Germany)
and following the manufacturer’s protocol. Samples from the col-
lections of the Royal Botanic Gardens, Kew, were extracted using
the 2x cetyltrimethylammonium bromide (CTAB) procedure of
Doyle and Doyle (1987) with minor modifications (see Muellner
et al., 2005) followed by additional purification using a caesium
chloride/ethidium bromide gradient (1.55 g/ml) and a dialysis pro-
cedure. The samples from James Cook University (Cairns, Australia)
were extracted with the CTAB procedure of Doyle and Doyle
(1987).

Seven plastid DNA regions and one nuclear ribosomal DNA re-
gion were amplified. Primers for the plastid regions are those de-
scribed in Edwards and Gadek (2001) for matK (specific primer
for the Dodonaeoideae were designed by Harrington et al., 2005)
and the trnK-matK intergenic spacer (IGS), the DNA barcoding pro-
ject (http://www.kew.org/barcoding/update.html) for rpoB, Deme-
sure et al. (1995) for the trnD-trnT IGS, Taberlet et al. (1991) for
trnL intron and trnL-trnF IGS, and Hamilton (1999) for trnS-trnG
IGS. Primers for the ITS region are described in White et al.
(1990) and additional primers were designed by Edwards and
Gadek (2001) for Sapindaceae s.1.

Amplification of selected regions were achieved in a 25 pl reac-
tion mixture containing 5 pl 5x PCR buffer, 1.5 pul 25 mM MgCl,,
0.5 pul 10 mM dNTPs, 0.5 pl 10 mM primers, 0.2 pl GoTaq polymer-
ase (5 U/ul) (Promega, Madison, WI, USA), and 14.5 pl ddH,0. The
amplification of the matK region was improved by the addition of
4% DMSO in the total volume of the PCR mix. PCR was performed
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in a Biometra® T3 thermocycler. Initial denaturation was pro-
grammed for 2 min at 95 °C, followed by 35 cycles at 95 °C for
455, 50°C for 455, 72°C for 1 min, plus a final extension of
10 min at 72 °C. PCR products were purified using the QIAquick
PCR purification kit (Qiagen, Hilden, Germany) and fluorescent
sequencing was performed by Macrogen, Inc. (Seoul, South Korea)
with the same primers used for PCR amplification.

2.3. Alignment

The program Sequencher version 4.1 (Gene Codes Corp., Ann Ar-
bor, Michigan, USA) was used to assemble complementary strands
and verify software base-calling. The eight regions where initially
aligned individually with ClustalX (Thompson et al., 1997), and
thereafter manually adjusted with the program Bioedit (Hall,
1999) using the similarity criterion (Morrison, 2006). The program
Concatenate (Alexis Criscuolo, http://www.lirmm.fr/~criscuol/)
was used to construct two combined matrices, differing in the
number of markers considered and in the level of missing data
(see below).

2.4. Phylogenetic analyses

2.4.1. Single-gene analyses

Individual phylogenetic analyses and their corresponding boot-
strap analyses were performed using the maximum likelihood
(ML) and maximum parsimony (MP) criteria. Each partition and
the combined data sets were analyzed using parsimony ratchet
(Nixon, 1999) as implemented in PAUPrat (Sikes and Lewis,
2001). Based on recommendations by Nixon (1999), ten indepen-
dent searches were performed with 200 iterations and 15% of the
parsimony informative characters perturbed. The shortest equally
most parsimonious trees were combined to produce a strict con-
sensus tree. To assess the support at each node, non parametric
bootstrap analyses (Felsenstein, 1985) were performed using
PAUPx* version 4.0b10 (Swofford, 2002) with 1000 replicates, SPR
branch swapping, simple sequence addition, MULTREES and hold-
ing 10 trees per replicate. We used SPR branch swapping because it
has been shown to be twice as fast as TBR and results in support
percentages that are not significantly different (Salamin et al.,
2003).

Model selection for each partition was assessed using Modeltest
version 3.7 (Posada and Crandall, 1998) and the Akaike informa-
tion criterion (Akaike, 1973). ML analyses were performed using
RAXML version 7.0.0 (Stamatakis, 2006; Stamatakis et al., 2008)
with a 1000 rapid bootstrap analyses followed by the search of
the best-scoring ML tree in one single run. This analysis was done
using the facilities offered by the CIPRES portal in San-Diego, USA
(http://8ball.sdsc.edu:8888/cipres-web/home).

In this study, nodes with bootstrap supports (BS) below 50% are
considered not supported, 50-74% are considered weakly sup-
ported, 75-89% are moderately supported and 90-100% are
strongly supported. Topological differences between single-gene
phylogenetic trees were compared using TreeJuxtaposer (Munzner
et al., 2003), taking into account the level of resolution of each
marker and their bootstrap supports. In this study, topological dif-
ferences having a bootstrap support inferior to 75% were not
considered.

2.4.2. Combined analyses

The impact of missing data on combined MP and ML phyloge-
netic analyses was tested based on two different combined
matrices. The first matrix (hereafter named “4 markers” data
set) was composed of specimens for which sequence information
was available for the nuclear ribosomal ITS region and for three
of the seven plastid regions (rpoB, trnL intron and trnL-trnF IGS).

In this combined matrix, the four remaining plastid markers
were not included in order to have a complete matrix without
missing data. The second combined matrix (hereafter named
“4+4 markers” data set) comprised the same set of taxa as the
“4 markers” data set, but also included the other four plastid
markers (matkK, trnD-trnT IGS, trnK-matK IGS and trnS-trnG IGS).
This data set was designed to evaluate the effect of additional
information on the resolution and support of topologies in com-
parison to the “4 markers” analyses. Taxa for which no se-
quences were available for a given marker were coded as
missing data for the corresponding cells in the combined matrix
(sensu Wiens and Reeder, 1995).

Total evidence trees (sensu Kluge, 1989) were determined using
both ML and MP criteria on the two data sets using the same set-
tings as in the single-gene analyses. Non parametric bootstrap
analyses were performed for the data sets following the same set-
tings as for the single-gene analyses. Before computing total evi-
dence trees, an incongruence length difference (ILD) test (Farris
et al., 1994) was performed as implemented in PAUPx version
4.0b10 (Swofford, 2002) with 100 replicates.

2.5. Topological congruence and impact of missing data on combined
analyses

Based on analyses of the combined matrices (i.e., “4 mark-
ers” and “4+4 markers” data sets), the impact of missing data
on MP and ML phylogenetic analyses was investigated (i) by
assessing topological distances among trees obtained using dif-
ferent data sets and algorithms and (ii) by comparing taxa
groupings (and clade supports) in each topology. The explicitly
agree distance (Estabrook et al., 1985; Estabrook, 1992; EA dis-
tance) was calculated to evaluate the extent to which total evi-
dence trees were compatible with each other. The EA distance
quantifies the differences between trees of the same size (i.e.,
comprising the same number of terminal taxa). It evaluates
the proportion of triplets that are resolved identically in two
trees (see Wilkinson et al., 2005). EA distances were calculated
using DARWIN 5 (Perrier et al., 2003). The congruence of topo-
logical groupings in analyses obtained from different data sets
and algorithms was evaluated using TreeJuxtaposer (Munzner
et al., 2003) and bootstrap supports of each main clade were
compared.

3. Results
3.1. Alignment

The number of sequences included in each single-gene partition
varied from 69 in trnS-trnG IGS to 154 in rpoB, trnL intron and
trnL-trnF IGS (Table 2). For the ITS region, all specimens were
sequenced, except the outgroup species Sorindeia sp. (i.e., 153 se-
quences were produced). The alignment length ranged from
363 bp in rpoB to 2156 bp in trnS-trnG IGS (Table 2). The ITS region
had the highest number of variable characters (51.4%), whereas
trnS-trnG IGS had the lowest (23.8%), even less than the coding re-
gions matK and rpoB (29.1% and 37.2%, respectively). The same
trend was recorded for the percentage of potentially parsimony-
informative characters (37.8% for the ITS region and 9.0% for the
trnS-trnG IGS; Table 2).

The combined data sets consisted respectively of 615 se-
quences (154 specimens; no missing data in ingroup taxa) for
the “4 markers” data set, and 997 sequences (154 specimens;
18.6% missing data) for the “4+4 markers” data set (Table 2).
The alignment length of the two data sets was respectively
3031 bp (“4 markers”) and 9657 bp (“4+4 markers”). The “4
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markers” data set had a highest percentage of variable characters
(44.7%) than the “4+4 markers” data set (37.0%). The same
observations were recorded for the percentage of potentially par-
simony-informative characters (30.3% for the “4 markers” and
21.2% for the “4+4 markers” data sets; Table 2). However, when
considering the total amount of phylogenetic information aver-
aged by the number of taxa, the “4+4 markers” data set showed
a value more than twice higher than did the “4 markers” data
set (Table 2).

3.2. Phylogenetic analyses

3.2.1. Single-gene analyses

The best-fit model for all partitions was the general time revers-
ible (GTR) with an alpha parameter for the shape of the gamma dis-
tribution to account for among-site rate heterogeneity (Yang,
1993). The only exception was for the ITS region for which a pro-
portion of invariable sites was added. Although the MP and ML sin-
gle-gene analyses provided topologies with different levels of
resolution within Sapindaceae s.l. (e.g., the MP trees were usually
not resolved in several parts of the tree), no moderately to strongly
supported differences (>75%) were observed between single-gene
trees. In addition, the ILD test was not significant (P = 0.9) and indi-
cated that the eight data sets were congruent. Those results al-
lowed the combination of the partitions in a total evidence
approach. Statistics (number of most parsimonious trees; tree
length; consistency and retention indices) for each analysis are re-
ported in Table 2.

3.2.2. Combined analyses

The most parsimonious trees for the two combined analyses un-
der the MP criterion were respectively 5889 (“4 markers” data set)
and 9843 (“4+4 markers” data set) steps. Under the ML criterion,
the best-fit model for the combined matrices was GTR with a pro-
portion of invariable sites and an alpha parameter for the shape of
the gamma distribution to account for among-site rate heterogene-
ity (Yang, 1993). This model was used to perform the ML search
(log likelihoods were —34322.2 for the “4 markers” data set and
—69253.8 for the “4+4 markers” data set) followed by rapid boot-
strap analyses.

3.3. Topological congruence and impact of missing data on combined
analyses

The congruence (expressed by 1 — EA distance) between total
evidence trees compiled under the ML criterion was higher (98%
of common triplets between total evidence trees based on “4 mark-
ers” and “4+4 markers” data sets) than between total evidence
trees obtained under MP criterion (90% of common triplets be-
tween total evidence trees based on “4 markers” and “4+4 mark-
ers” data sets) (Table 3). The MP “4 markers” total evidence tree
exhibits the highest EA distances with the other total evidence
trees (Table 3).

Each of the four total evidence analyses showed support for
the monophyly of Sapindaceae s.l. as defined by Thorne (2007)
including Aceraceae and Hippocastanaceae (Table 4). No matter
which data set or algorithm were considered, the family was
subdivided into three moderately to strongly-supported lineages
and a fourth lineage only consisting of Xanthoceras sorbifolia,
with the following relationships: (Xanthoceras sorbifolia, (clade
A, (clade B, clade C))) (Table 4, Fig. 2). Despite strong support
for each clade, the sister position of the monotypic Xanthoceras
was not supported in any analyses (see clade A + clade B + clade
C in Table 4). This lineage corresponded to subfamily Xanthoce-
roideae as described by Thorne (2007). Clade A corresponded to

Table 2

Characteristics of partitions used in the phylogenetic analyses of the Sapindaceae s.l. See text for explanations regarding the compilation of combined data sets (i.e. “4 markers” and “4+4 markers”). IGS, intergenic spacer; the asterisk ()

indicates markers included in the combined “4 markers” phylogenetic analysis. MP, maximum parsimony.

Combined analyses

Single-gene analysis

ITS

Phylogenetic information

4'+4

4 markers’

rpoB’

trnS-trnG

IGS

trnL-trnF

L
intron

t

trnK-matK

IGS

trnD-trnT
IGS

matK

markers
139/84

139/84

67/47
69

139/84
154

139/84
154

100/63
109

79/62
85

139/84
154

110/69

119

139/84
153

No. of ingroup sampled species/genera

997 (154)

615 (154)

No. sequences incl. outgroup (in brackets, total number of samples for the

combined analyses)
Sequence length range

1311-1365

380-430

705-753 510-522

1086-1425

357-363

1074~
1242
1614
21.7

650-705

1925 931 773 661 2156 3031 9657
54.6

441

363

1234

Alignment length

18.6 (27.3)

0(0)

283

Missing data (percentage of ingroup sequences; in brackets percentage of

nucleotides for the combined analyses)

No. constant characters (%)

6088 (63.0)

1675
(55.3)
1356

1096 (56.9) 530 (56.9) 489 359 (54.3) 1643 (76.2)

228

1144
(70.9)
470

599

(63.3)
284

(62.8)
135

(48.5)
635

3569 (37.0)

513 (23.8)

302 (45.7)

401 (43.1)

829 (43.1)

(%)

No. variable characters

(44.7)

(36.7)
166

(29.1) (37.2)

295

(51.4)
467

2043 (21.2)

195 (9.0) 918 (30.3)

230 (24.7) 190 (28.7)

405 (21.0)

95 (26.2)

No. potentially parsimony-informative (PI) characters (%)

(21.5)

(18.3)

(37.8)

23.2/133

8.8/6.0

Mean amount of phylogenetic information per sample (averaged by variable

sites number/PI sites number)

No. trees retained (MP)
Tree length (MP ; step)

1010
9843
0.504
0.726

2001 1786 1707 1023 1190 1138
576 5889

1997
246

1991

525

1447 790 578 798
0.701 0.707 0.731 0.675 0.681 0.680 0.741 0.372
0.861

4365
0.282

Consistency Index (MP)
Retention Index (MP)

0.698

0.665

0.849 0.899 0.811 0.790 0.879

0.640
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Table 3

Level of topological agreement (based on EA distances) between total evidence trees
inferred from the “4 markers” and “4+4 markers” data sets. See text for explanations
regarding the compilation of these data sets. MP, maximum parsimony; ML,
maximum likelihood.

1 2 3 4
1- ML “4 markers” -
2- MP “4 markers” 0.177 —
3- ML “4+4 markers” 0.021 0.189 —
4- MP “4+4 markers” 0.028 0.173 0.027 —

subfamily Hippocastanoideae (including the previous recognized
families Aceraceae and Hippocastanaceae) as described by
Harrington et al. (2005) and Thorne (2007). Clade B corre-
sponded to subfamily Dodonaeoideae as described by Harrington
et al. (2005) and Thorne (2007) with the addition of Euphorian-
thus (Cupanieae; Sapindoideae). Clade C corresponded to sub-
family Sapindoideae (Thorne, 2007; Harrington et al., 2005)
plus one representative from Dodonaeoideae, Conchopetalum, in-
cluded in tribe Harpullieae. Clade C was moderately to strongly
supported as monophyletic and divided into ten groups, but
not in the MP “4 markers” total evidence tree (only one excep-
tion: clade V nested in clade VI; Table 4). The bootstrap supports
of each clade obtained under the ML algorithm are consistent in
both data sets (Table 4), whereas support slightly increases in
MP analyses, in parallel to an increase in missing data
(Table 4).

The “4 markers” and “4+4 markers” topologies recognized all
the classical tribes (except the Paullinieae) as paraphyletic or
polyphyletic. However, phylogenetic status of tribes Cossinieae
and Koelreuterieae were not tested because only one genus per
tribe was considered. In total 5 of the 67 non-monotypic sam-
pled genera (7.5%) are paraphyletic or polyphyletic (Cupaniopsis,
Guioa, Haplocoelum, Matayba, Sarcotoechia). However, the phylo-
genetic status of some of these genera needs to be treated with
caution because of weak bootstrap supports and limited sam-
pling (e.g., Guioa).

Table 4

4. Discussion
4.1. Congruence of topologies with and without missing data

Our results indicate a high level of congruence among topol-
ogies obtained using data sets with and without missing data
and based on different algorithms. Considering the “4 markers”
data set (without missing data), MP and ML algorithms however
produced slightly different topologies regarding clades C-V and
C-VI (i.e., in the MP “4 markers” tree clade C-VI is paraphyletic
with the inclusion of the clade C-V, whereas all other topologies
considered this clade as monophyletic; Table 4). This could be
explained mostly by the small amount of phylogenetic informa-
tion in the “4 markers” data set that prevent the MP algorithm
to find a proper solution (averaged over the number of terminal
taxa; Table 2). Although the addition of 4 markers to the data
set generated 18.6% of missing data (27.3% of missing nucleo-
tides) in the “4+4 markers” data set, the added information dou-
bled the mean amount of potentially parsimonious-informative
characters per terminal taxa and increased the bootstrap support
for several nodes in the total evidence trees (Tables 2 and 4).
Since our results highlight a high congruence level among topol-
ogies obtained with different data sets and algorithms, only the
ML total evidence tree inferred from the “4+4 markers” data set
will be discussed in order to maximize phylogenetic information
(Figs. 2-6).

4.2. Phylogenetic relationships

Our results support (1) the paraphyly of the currently defined
Dodonaeoideae and Sapindoideae as defined by Thorne (2007);
(2) the polyphyly of all tribes (tribes Cossinieae and Koelreuterieae
are not considered because only one genus per tribe was sampled)
with the possible exception of Paullinieae - whose monophyletic
status shall be evaluated by the inclusion of three missing genera
Houssayanthus, Lophostigma and Thinouia in future analyses - and
(3) the paraphyly or polyphyly of 5 of the 67 non-monotypic sam-
pled genera (7.5%) included in this study (Table 1).

Summary of the bootstrap support for each clade recovered in the four total evidence trees (two data sets and two algorithms). Bootstrap supports for clade C-I are not indicated
because this lineage is only composed by Delavaya yunnanensis. Note: Although monophyletic, clade C-V is nested into clade C-VI, the latter is not recovered by the MP analysis

based on the “4 markers” data set. MP, maximum parsimony; ML, maximum likelihood.

Combined data sets ML MP
4 markers 4+4 markers 4 markers 4+4 markers

Sapindaceae s.l. 94 91 97 97
Clade A + Clade B + Clade C 65 58 60 57
Clade A 100 100 99 99
Clade B 94 91 99 99
B-1 100 100 100 100
B-II 88 77 86 86
Clade C 92 87 96 98
C-II 100 100 100 100
C-IIl 100 100 100 100
C-1v 77 98 <50 65
C-IV-a 73 100 73 100
C-IV-b 100 100 <50 83
C-v 100 100 99 100
C-VI 60 75 — <50
C-Vl-a 69 89 <50 65
C-VI-b 65 83 <50 58
C-vII 100 100 100 100
C-vIII 60 61 50 70
C-IX 100 100 99 100
C-X 100 100 93 100
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8 _<| Clade B Dodonaeoideae (. Euphorianthus)
53.[ Acer saccharum
91 100 Acer erianthum
Dipteronia sinensis

Xanthoceras sorbifolia
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Clade A Hippocastanoideae
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Fig. 2. Best maximum likelihood phylogenetic tree for Sapindaceae s.l. inferred from eight nuclear and plastid nucleotide sequences. Bootstrap supports are indicated above
branches. The revised infrafamilial classification based on molecular and morphological characters is indicated in grey. Abbreviations: COS, Cossinieae; CUP, Cupanieae; DOD,
Dodonaeeae; DOR, Doratoxyleae; KOE, Koelreuterieae; HAR, Harpullieae; LEP, Lepisantheae; MEL, Melicocceae; NEP, Nephelieae; PAU, Paullinieae; SAP, Sapindeae; SCH,

Schleichereae; THO, Thouinieae.

In light of these results, a new infrafamilial classification for
Sapindaceae s.l. is required. However, we recommend caution in
formally proposing new tribes until (i) non-molecular synapomor-
phies supporting putative new tribal delimitations are identified
and (ii) the inclusion of missing genera in future phylogenetic anal-
yses. In order to provide efficient guidelines for a new classification
of the family, the phylogenetic framework obtained here is dis-
cussed according to several key morphological characters such as
leaf type (including phyllotaxy), wood anatomy, number of ovules
per locule, fruit type and pollen (Fig. 1), as well as geographical dis-
tribution. Hereafter, the definition of Dodonaeoideae and Sapindoi-
deae will be expanded to include Euphorianthus in the former and
Conchopetalum in the latter.

Xanthoceroideae and Hippocastanoideae occur mostly in tem-
perate regions [except Billia (not included here), which occurs from
Mexico to tropical South America], whereas Dodonaeoideae have a
temperate (e.g., south of Australia) and tropical pattern of distribu-
tion. On the other hand, Sapindoideae have mainly radiated in
tropical regions. Within Sapindaceae s.l, a trend towards the
reduction of the number of ovule per locule is observed: from six
to eight (Xanthoceroideae) to two (Hippocastanoideae and most
of the Dodonaeoideae) and finally one (Sapindoideae except Conc-
hopetalum). All four subfamilies recognized by Thorne (2007) are
discussed separately below.

4.3. Subfamily Xanthoceroideae (Fig. 2)

The phylogenetic position of the monotypic Chinese Xanthoc-
eras in relation to the other three main lineages of Sapindaceae
remains unsupported (BS < 50) (Fig. 2; Table 4). Nevertheless, this
species was moderately supported as the earliest-diverging line-
age in Sapindaceae s.l. in earlier studies (matK, rbcL, Harrington
etal., 2005; rbcL, Savolainen et al., 2000; 18S rDNA, atpB, rbcL, Sol-
tis et al., 2000). In the first molecular phylogeny of Sapindaceae

s.l., Harrington et al. (2005) argued that an increased sampling
of other monotypic Southeast Asian genera of Harpullieae (e.g.,
Arfeuillea, Delavaya, Eurycorymbus) and Koelreuterieae (Sino-
radlkofera) might help break up possible long-branch attraction
and stabilize the position of this taxon. However, our study shows
that even when considering 60.3% of the generic diversity and
including Arfeuillea, Delavaya and Eurycorymbus, the phylogenetic
position of this genus remains unchanged. This small shrub is
characterized by unusual features in Sapindaceae such as decidu-
ous imparipinnate leaves (vs. deciduous simple leaves or semper-
virent imparipinnate or paripinnate leaves in other Sapindaceae),
six to eight fertile ovules per locule (generally 1 or 2 ovules per
locule in the rest of the family) and the presence of orange
horn-like appendages protruding from the disk (absent in other
genera). Moreover, this species exhibits a type-A pollen which
was expected to be ancestral in Sapindaceae by Miiller and
Leenhouts (1976) (Fig. 1). However, this pollen type is wide-
spread across the taxa sampled in our phylogeny and is conse-
quently of limited systematic utility.

4.4. Subfamily Hippocastanoideae (Clade A, Fig. 2)

The inclusion of Aceraceae and Hippocastanaceae in Sapinda-
ceae has been debated for decades (e.g., Radlkofer, 1933; Miiller
and Leenhouts, 1976; Umadevi and Daniel, 1991; Judd et al,,
1994) and both are currently included in Sapindaceae by the
Angiosperm Phylogeny Group (APGII, 2003). However, the final
decision regarding the taxonomic level of this well-supported
clade (BS 100, Fig. 2) is somewhat dependant on the placement
of Xanthoceras sorbifolia. Although Billia and Handeliodendron,
thought to be close relative of Aesculus (Xiang et al., 1998; Forest
et al., 2001), were not sampled here, the analysis confirms the def-
inition of Hippocastanoideae as previously suggested by Judd et al.
(1994) and Harrington et al. (2005). This temperate clade is charac-
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Clade B
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97 Filicium thouarsianum DOR
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Doratoxylon chouxi (Labat 3543) DOR
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L Llagunoa nitida COS
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Fig. 3. Relationships within subfamilies Hippocastanoideae (clade A) and Dodonaeoideae (clade B). Bootstrap supports are indicated above branches. The revised infrafamilial
classification based on molecular and morphological characters is indicated in grey. See Fig. 2 for abbreviations of tribes.

terized by deciduous opposite simple leaves (generally palmatilo-
bate), two ovules per locule and a type-A pollen (Biesboer, 1975;
Miiller and Leenhouts, 1976, Fig. 1).

4.5. Subfamily Dodonaeoideae (Clade B, Figs. 2 and 3)

The improved sampling for subfamily Dodonaeoideae (i.e., the
addition of genera Arfeuillea, Averrhoidium, Doratoxylon, Euphorian-
thus, Eurycorymbus, Llagunoa and Majidea) allows the recognition
of two moderately to well-supported clades (Fig. 3, Table 4). This
topology was partially recovered by Harrington et al. (2005), but
the addition of new taxa allow their delimitation based on fruit
morphology: clade I (Doratoxylon group) occurs from Africa, Mad-
agascar to Australasia and is characterized by indehiscent berry-
like fruits, whereas clade II (Dodonaea group) is distributed in
South America, Madagascar, Australasia and the Pacific islands
(Dodonaea viscosa had a worldwide distribution) and comprises
species with dehiscent fruits. In addition to the widespread
type-A pollen occurring in both clades, specialized pollen types
characterizing specific taxa occur in clade II [i.e., type-F (Diplopeltis
hueglii) and type-H (Harpullia cupanoides)] (George and Erdtman,
1969; Miiller and Leenhouts, 1976, Fig. 1). Clades I and II have
generally two ovules per locule; however a reduction to one ovule
per locule occurs independently in the two clades (Filicium in clade
I and Euphorianthus in clade II). Moreover, a few species of
Harpullia (clade II), such as H. arborea, have 1-2 ovules per locule
(Adema et al., 1994).

4.6. Subfamily Sapindoideae (clade C, Figs. 2 and 4-6)

4.6.1. Early-diverging lineages (Fig. 4)

Subfamily Sapindoideae is by far the most diverse lineage in
terms of species. Based on our analyses, we propose to divide it
into ten groups that are discussed in light of their morphological
features, geographical distribution and compared to tree topolo-
gies obtained by Harrington et al. (2005) (Figs. 4-6). The Delavaya
group is the first lineage to diverge in Sapindoideae (clade I). Only
the Chinese monotypic genus Delavaya is included in the present
study. Results from Harrington et al. (2005) highlighted the Mexi-
can and Texan genus Ungnadia (from which nuclear sequences
were unavailable) as the most basal lineage in Sapindoideae. Com-
bined plastid analyses (Buerki, unpublished data) revealed a close-
relationship between those two genera as suggested by Judd et al.
(1994; based on morphological characters); however this relation-
ship must be further examined using nuclear sequences. The Dela-
vaya group is characterized by elongated petal base appendages
and glabrous stamens (Judd et al., 1994) and the wood anatomy
within the group is identical to the Cupanieae (Klaassen, 1999).
The Koelreuteria group (clade II, BS 100), here comprising only Koel-
reuteria, is distributed in southern China and western Pacific. The
study of Harrington et al. (2005) revealed a close-relationship be-
tween this genus and Smellophylum and Stadmania, distributed in
East-Africa, Madagascar and the Mascarene archipelago. When a
broad definition is considered, the Koelreuteria group shows both
ancestral (type-A pollen; Miiller and Leenhouts, 1976, Fig. 1) and
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Fig. 4. Relationships within subfamily Sapindoideae (clade C). Bootstrap supports are indicated above branches. The revised infrafamilial classification based on molecular

and morphological characters is in grey. See Fig. 2 for abbreviations of tribes.

derived characters (one ovule per locule in Smellophylum and Stad-
mania) and is characterized by the presence of trichomes on the
anther. Since these two lineages show a disjunct distribution and

Serjania communis PAU

Serjania glabrata PAU

Serjania altissima PAU

Paullinia subauriculata PAU

Paullinia pinnata PAU

Cardiospermum sp. (Yuan s.n.) PAU

Urvillea ulmaceae PAU
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X Paullinia group

IX  Melicoccus group

VIII Blomia group

Tristiropsis group

V' Macphersonia group

Il Schleichera group

Il Koelreuteria group

transitional character states, they might be relicts of early diversi-
fication events in the subfamily (caused by long distance dispersals
for example). The Schleichera group, which is partially recovered by
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Clade C-IV

98

Lepisanthes feruginea LEP

Lepisanthes rubiginosus LEP

Lepisanthes alata LEP

Lepisanthes senegalensis LEP

Pseudimasp. CUP

_ml_ Atalaya capense SAP
100

Atalaya alata SAP

Deinbollia borbonicaSAP

Deinbollia oblongifolia SAP

100

Deinbollia macrocarpa(H. Razafindraibe 118) SAP

Deinbollia macrocarpa(Buerki 144) SAP

Deinbollia pervillei (Callmander 688) SAP
Deinbollia pervillei (Phillipson 5919) SAP

100 Pometia pinnata (Yuan s.n.) NEP

63 Pometia pinnata (Chase 2135) NEP

100 Nephelium chryseum NEP

Dimocarpus australianus NEP

91 |
Litchi chinensis NEP

Cubilia cubiliNEP

100 Blighia sapida CUP

249

100 65

100 [ Eriocoelum microspermum CUP
99 Eriocoelum kerstingii CUP

Lepidopetalum fructoglabrum CUP

81 I Haplocoelopsis africana CUP

91

100 r— | accodiscus klaineanus CUP

97

100

—

0.01

Pancovia golungensis LEP
Chytranthus carneus LEP

Lecaniodiscus fraxinifolius SCH

Glenniea pervilei LEP

Fig. 5. Phylogenetic relationships within the Litchi group (clade C-IV; see Fig. 4). Bootstrap supports are indicated above branches. See Fig. 2 for abbreviations of tribes.

Harrington et al. (2005), here with the inclusion of Amesiodendron
(Cupanieae), is a well-supported (BS 100) tropical Asian clade
(clade III, Fig. 4). This clade is characterized by a Cupanieae-like
wood anatomy (Klaassen, 1999) and type-B pollen (Miiller and
Leenhouts, 1976, Fig. 1).

4.6.2. The Litchi group (Figs. 4 and 5)

This clade (clade 1V, BS 98, Fig. 4) is divided into two well-sup-
ported groups (a and b; Fig. 5). Clade a (BS 100) partially corre-
sponds to the Dimocarpus group proposed by Miiller and
Leenhouts (1976; traditionally comprising Cubilia, Dimocarpus,
Litchi, Nephelium, Pometia and Xerospermum) and a heterogeneous
group comprising mostly African genera as well as the Indian and
Australian Lepidopetalum. Our study also confirms the close rela-

tionships of Pometia (characterized by type-C1 pollen; Miiller and
Leenhouts, 1976; van der Ham, 1990, Fig. 1) with the other mem-
ber of the Dimocarpus group as expected by Miiller and Leenhouts
(1976). The Lepisantheae-type wood anatomy of Eriocoelum
(Cupanieae; Klaassen, 1999) confirms its relationships with the
other genera of Lepisantheae from this clade. A more comprehen-
sive analysis of this clade is currently being undertaken (Buerki,
unpublished data).

Clade b (BS 100) partially corresponds to group A of Miiller and
Leenhouts (1976) with the addition of Pseudima (Cupanieae). The
inclusion of the South American Pseudima is supported by type-A
pollen (Miiller and Leenhouts, 1976, Fig. 1) and similar wood anat-
omy shared with other Sapindeae (Klaassen, 1999). Our results
highlight the close affinities of Lepisanthes, Sapindus and Atalaya,
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Clade C_VI 0 Arytera littoralis (Chase 2123) CUP

10! E
Arytera littoralis (Yuan s.n.) CUP

99 [ Synima macrophyllaCUP

Sarcotoechia serrata CUP

8351 00 Cupaniopsis anacardioides CUP
Cupaniopsis flagelliformis CUP
== _Toechima plurinerva CUP
Toechima erythrocarpum CUP
100 | Toechima tenax (Chase 2132) CUP
Toechima tenax(Chase 2046) CUP

Sarcotoechia villosa CUP
Storthocalyx sp. (Munzinger 960) CUP
Mischarytera sp. (Edwards KE159) CUP
Gongrodiscus bilocularis CUP

Rhysotoechia mortoniana CUP

100 : Matayba domingensis CUP
Matayba apetala CUP
99 Lepiderema hirsuta CUP
100 _:Lepiderema pulchellaCUP

100 Cupaniopsis fruticosa CUP

Cupaniopsissp. (Munzinger 710) CUP
Mischocarpus pyriformis CUP

Mischocarpus pentapetalus CUP
Mischocarpus grandissumus CUP
Mischocarpus exangulatus CUP

Sarcopteryx sp. (Edwards KE49) CUP

100

Sarcopteryx reticulata CUP
Sarcopteryx martyana CUP
99 Neotina coursii CUP
99 Tinopsis apiculataSCH
100 Tina striata CUP
Tina isaloensis CUP
100 Molinaea petiolaris CUP
_: Molinaeasp. nov. CUP
Matayba cf. opaca CUP
Matayba laevigata CUP

100

n Matayba guianensis CUP

Matayba elaeagnoides CUP

97|
Vouarana guianensis CUP

100

Cupania dentata CUP
100 Cupania rubiginosa CUP

| Cupania scrobiculata CUP
Cupania hirsuta CUP

Guioa semiglaucaCUP

Guioa villosa CUP

Guioa sp. (Munzinger 945) CUP

61
Guioa microsepalaCUP
Cupaniopsissp. (Munzinger 1103) CUP
Guioa glaucaCUP

00— Jagera serrata CUP
—_ Jagera javanica subsp. australiana CUP

Alectryon connatus NEP
Podonephelium homei NEP

Diploglottis campbelli CUP
80 Elattostachys nervosa CUP

_: Elattostachys microcarpa CUP a
Elattostachys apetala(Munzinger 692) CUP

Elattostachys apetala (McPherson 18184) CUP
Elattostachys sp. (Lowry 5650A) CUP

97

0.01

Fig. 6. Phylogenetic relationships within the Cupania group (clade C-VI; see Fig. 4). Bootstrap supports are indicated above branches. See Fig. 2 for abbreviations of tribes.
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but the understanding of relationships within this group will re-
quire additional data. The monophyly of the African-Malagasy
Deinbollia is supported by molecular analyses and type-A1 pollen
(Miiller and Leenhouts, 1976, Fig. 1).

4.6.3. The Macphersonia group (Fig. 4)

Our study reveals for the first time relationships between
southeast African and Malagasy genera (BS 100, Fig. 4). Two
strongly supported clades were formed by South African Pappea
capensis and Malagasy Plagioscyphus (BS 100) and Malagasy Begtea,
Conchopetalum and Haplocoelum perrieri, as well as east African and
Malagasy Macphersonia (BS 100). Pappea was previously thought to
be related to other Nephelieae (Alectryon, Podonephelium, Smelo-
phyllum and Stadmania) by Miiller and Leenhouts (1976), and
placed without support as sister to Paullinieae and Thouinieae by
Harrington et al. (2005). The position of Conchopetalum, character-
ized by inflated fruits without arillode, in the traditional core Mal-
agasy Schleichereae, defined by indehiscent fruits and a fleshy
arillode surrounding the seed, was an unexpected result (Capuron,
1969). This clade is characterized by actinomorphic flowers, one
ovule per locule (except two in Conchopetalum) and is distributed
throughout Madagascar and southeast Africa.

4.6.4. The Cupania group (Figs. 4 and 6)

The Australasian and Malagasy/South American clade VI (BS
75, Fig. 4) encloses the majority of Cupanieae genera (23 of
the 32 sampled genera) and is divided into two main groups
(Figs. 4 and 6). In the Australasian clade a (BS 100), the mono-
phyly of Elattostachys is well supported and the expected close
relationship between the New Caledonian Podonephelium and
Australasian and Pacific Alectryon is confirmed by this phyloge-
netic analysis and the shared type-A pollen (Miiller and Leenh-
outs, 1976, Fig. 1). Only one non Cupanieae taxon belongs to
clade b (BS 100): Tinopsis apiculata (Schleichereae). The Mala-
gasy Tinopsis was first described as part of the Cupanieae (Rad-
lkofer, 1933) and later transferred to the Schleichereae based on
the indehiscence of the fruit and the presence of a fleshy aril-
lode (Capuron, 1969). However, no floral or vegetative charac-
ters have been identified to discriminate this genus from the
Malagasy Cupanieae genera Tina and Neotina. This study con-
firms the close relationships between these genera and supports
Radlkofer’s (1933) hypothesis. This example and others encoun-
tered in clades Il and V provide strong arguments supporting
the convergent evolution of fruit morphology and consequently
its limited systematic utility. The plasticity of fruit types has
been demonstrated in several phylogenetic studies performed
on a wide range of taxa (e.g., van Welzen, 1990; Adema,
1991; Muellner et al., 2003). The Cupania group is characterized
by type-B pollen (except Alectryon and Podonephelium which
have type-A pollen; Miiller and Leenhouts, 1976, Fig. 1). In gen-
eral, taxa within clade b present low genetic distances among
them while having long terminal branches (especially the
Australasian representatives such as Cupaniopsis, Gongrodiscus
and Toechima).

4.6.5. The Paullinia group and allies (Tristiropsis, Blomia and
Melicoccus groups) (Fig. 4)

Although strongly supported in general (except for the Blo-
mia group; Table 4), the relationships between these four
groups remain unclear (Fig. 4). The monophyly of the Austral-
asian clade VII and the Mexico/East African clade VIII are
weakly to well-supported (BS 100 and BS 61, respectively,
Fig. 4). To date, no morphological characters have been identi-
fied that circumscribe these lineages. The monophyly of the
South American clade IX is well supported (BS 100, Fig. 4)
and confirms the suggested affinities between Melicoccus and

Talisia argued by Acevedo-Rodriguez (2003) based on morphol-
ogy and pollen characters.

The pantropical clade X (Fig. 4) is strongly supported (BS 100)
and corresponds both to the Nomophyllae group defined by Rad-
lkofer (1933) and to the group C proposed by Miiller and Leenhouts
(1976) containing Paullinieae and Thouinieae. Although no repre-
sentatives of genus Allophylus (Thouinieae) were included here,
our study confirms the results of the morphological cladistic anal-
yses of the two tribes conducted by Acevedo-Rodriguez (1993b)
and the molecular analyses of Harrington et al. (2005), which show
a monophyletic Paullinieae nested in a paraphyletic Thouinieae.
Our analysis indicates that the enigmatic species Sapindus oligo-
phyllus has affinities with genera in this clade (Fig. 7). The generic
position of this taxon has puzzled taxonomists for decades. It was
first described as a member of Aphania and subsequently trans-
ferred in Sapindopsis, Howethoa, Sapindus (see Rauschert, 1982 for
review) and recently merged, although informally, in Lepisanthes
by Xia and Gadek (2007). The increase of sampling and the inclu-
sion of Allophylus species might help to circumscribe the position
of this taxon. Type-A pollen and the tree life-form are shared by
the most basal lineages in this clade (Athyana weinmannifolia,
Diatenopteryx sorbifolia and Bridgesia incisifolia; Acevedo-Rodri-
guez, 1993b, Figs. 1 and 7), whereas the other taxa have a highly
specialized pollen type (type-C2-3; Miiller and Leenhouts, 1976,
Fig. 1) and a tendency towards liana habit. Species with subtype-
C pollen do not form a monophyletic group and consequently this
character is of limited systematic value (e.g., type-C3 is encoun-
tered in Thouinia and Paullinia; Miiller and Leenhouts, 1976; Acev-
edo-Rodriguez, 1993b, Figs. 1 and 4). Clade X is characterized by
zygomorphic flowers, petals with a prominent scale, an unilateral
disk and imparipinnate leaves. The liana habit and the develop-
ment of tendrils and stipules constitute synapomorphies for Paul-
linieae (Fig. 4).

4.7. Informal tribal groupings within Sapindaceae

The phylogenetic analysis inferred from eight nuclear and plas-
tid regions provides a robust assessment of the relationships with-
in Sapindaceae s.. (although the relationships between the
subfamilies remain weakly supported) (Fig. 2). Nevertheless, the
tribal delimitations as currently defined (and based largely on fruit
morphology) must be revised because of the plasticity of fruit char-
acters in this group. When Richardson et al. (2000a,b) assessed the
tribal classification of Rhamnaceae (also defined by fruit morphol-
ogy), they encountered the same taxonomic difficulty and pro-
posed a new classification based on molecular data in
combination with morphological characters. We follow a similar
approach and propose here an informal grouping that could serve
as basis for a formal reclassification of Sapindaceae s.l. based on
molecular and morphological data. The family is subdivided into
four subfamilies (as recognized by Thorne, 2007) and 14 groups:
Xanthoceroideae, Hippocastanoideae (two groups); Dodonaeoi-
deae (two groups) and Sapindoideae (10 groups) (Figs. 2-4). The
groups within subfamilies might represent circumscriptions for
the definition of future tribes.

4.7.1. Subfamily Xanthoceroideae

It includes the monotypic Chinese Xanthoceras sorbifolia, this
deciduous shrub is characterized by alternate imparipinnate
leaves, 6-8 ovules per locule and orange horn-like appendages pro-
truding from the disk (Fig. 2).

4.7.2. Subfamily Hippocastanoideae
Temperate deciduous shrubs and trees (except Billia found
from Mexico to tropical South America) with simple generally
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palmatilobate opposite leaves and 2 ovules per locule (Fig. 2).
Although our sampling is limited for this subfamily, results
from other studies (Judd et al., 1994; Harrington et al., 2005;
Buerki, unpublished data) allows us to suggest two groups
within subfamily Hippocastanoideae, corresponding to the for-
merly recognized families Aceraceae and Hippocastanaceae
(Fig. 4):

- Acer group (Acer and Dipteronia): leaves palmately lobed to 3-
foliate or imparipinnate, or entire; actinomorphic unisexual or
bisexual flowers and samara;

- Aesculus group (Aesculus, Billia and Handeliodendron): leaves
palmately divided into 3-5 leaflets; zygomorphic andromonoe-
cious flowers and dehiscent fruit with one seed.

4.7.3. Subfamily Dodonaeoideae

This subfamily is expanded to include Euphorianthus, formerly
placed in Sapindoideae. The Dodonaeoideae as defined by Rad-
lkofer (1890, 1933) are characterized by the presence of two
or rarely more apotropous and upright ovules per locule, or
rarely one ovule that is epitropous and pendulous. However, this
does not hold anymore because of the inclusion of the above
mentioned genus of Sapindoideae showing one campylotropous
ovule per locule. This subfamily is divided into two groups
(Fig. 3):

- Doratoxylon group (Doratoxyleae, without Averrhoidium): inde-
hiscent berry-like fruits;

- Dodonaea group (Cossinieae, Dodonaeeae, Arfeuillea, Averrhoidi-
um, Eurycorymbus, Euphorianthus, Harpullia and Majidea): dehis-
cent fruits.

4.7.4. Subfamily Sapindoideae

The subfamily Sapindoideae should be expanded to include
Conchopetalum, formerly placed into the Dodonaeoideae. This sub-
family as defined by Radlkofer (1933) is characterized by a single
apotropous and upright or ascending ovule per locule; however
the inclusion of several genera with two ovules per locule
[Conchopetalum (this study), Delavaya, Koelreuteria and Ungnadia;
Harrington et al., 2005; Thorne, 2007; this study] renders this
key-character obsolete. Based on our phylogenetic analysis, ten
groups are now recognized (Fig. 4):

- Delavaya group (Delavaya and Ungnadia): two ovules per locule;
type-A pollen; elongated basal petals appendages; glabrous sta-
mens and Cupanieae wood anatomy.

Koelreuteria group (Koelreuteria, Smelophyllum and Stadmania):
type-A pollen and trichomes on anthers.

Schleichera group (Amesiodendron, Paranephelium and Schleic-
hera): type-B pollen and Cupanieae-type IV wood anatomy.
Litchi group [Lepisantheae, Nephelieae (without Alectryon, Pap-
pea, Podonephelium, Stadmania, Smelophyllum), Sapindeae
(without Sapindus oligophyllus), Blighia, Eriocoelum, Haplocoelop-
sis, Laccodiscus, Lecaniodiscus, Lepidopetalum and Pseudima)]: to
date, no morphological characters characterizing this group
have been identified.

Macphersonia group (Beguea, Conchopetalum, Haplocoelum
perrieri, Macphersonia, Pappea, and Plagioscyphus): actinomor-
phic flowers and one ovule per locule (except two in
Conchopetalum).

- Cupania group (Cupanieae [without Amesiodendron, Blighia, Blo-
mia, Dictyoneura, Eriocoelum, Haplocoelopsis, Laccodiscus, Lepid-
opetalum, Pseudimal, Alectryon, Podonephelium and Tinopsis):
type-B pollen (except Alectryon and Podonephelium, which dem-
onstrate type-A pollen).

- Tristiropsis group (Dictyoneura and Tristiropsis): to date, no mor-
phological characters characterizing this group have been
identified.

- Blomia group (Blomia and Haplocoelum foliosum): to date, no
morphological characters characterizing this group have been
identified.

- Melicoccus group (Talisia and Melicoccus): pollen type-A and
Melicocceae wood anatomy.

- Paullinia group (Paullinieae, Thouinieae and Sapindus oligophyl-
lus): imparipinnate leaves; zygomorphic flowers; petals with a
prominent scale and a unilateral disk.

4.8. Conclusions

This study based on eight nuclear and plastid regions and 60.3%
of the generic diversity of the Sapindaceae s.l. (152 samples and
139 species) (1) provides strong support for the monophyly of
the family when Xanthoceras sorbifolia, Aceraceae and Hippoca-
stanaceae are included (although relationships among subfamilies
are still weakly supported), (2) highlights a high degree of para-
phyly and polyphyly at subfamilial and tribal level, especially in
Sapindaceae s.s. (subfamilies Dodonaeoideae and Sapindoideae)
and (3) proposes a new informal classification for infrafamilial
arrangements. Increased sampling, filled sequence gaps and the
compilation of an extensive morphological matrix are now re-
quired to establish strong synapomorphies for each phylogenetic
clade. A particular attention might be given to inflorescence types
(and breeding systems) and floral morphology (e.g., shape and type
of petal scale, type of disk, number of carpels, pubescence on the
anthers, toxicity of the arillode). This might lead to a new formal
infrafamilial classification for Sapindaceae s.l., based on the pat-
terns highlighted in this study.
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Appendix

Voucher information and GenBank accession numbers for taxa used in the phylogenetic analysis of family Sapindaceae s.l. (including outgroups). Abbreviations: ANH, Andong
National University, South Korea; BBG, Bogor Botanic Garden, India, living collections; CSIRO, CSIRO Arboretum, Australia; G, Conservatoire et Jardin Botanique de la ville de Genéve,
Switzerland; JCT, James Cook University of Northern Queensland, Australia; K, Royal Botanic Gardens, Kew, UK; NEU, Neuchdtel, Switzerland; MO, Missouri Botanical Garden, USA; P,
Muséum d’Histoire Naturelle, France; RBG, Royal Botanic Gardens, Kew, UK, living collections; US, Smithsonian Institution, USA; Z, University of Ziirich, Switzerland.

Genera Species Author Voucher Herbarium Country GenBank Accession Nos.
ITS matK rpoB trnD-trnT  trnK-matK  trnL trnL-F trnS-trnG
Ingroup
Acer erianthum Schwer. Chase 19983 K China EU720501 - EU720843 EU720980 - EU721271 EU721459 -
Acer saccharum Marshall Chase 106 K Cult. source, Orange EU720502 - EU720844 - - EU721272 EU721460 -
Co.
Aesculus indica (Wall. ex Cambess.) Chase 19987 K India EU927392 - EU720845 EU720981 - EU721273 EU721461 -
Hook.

Alectryon connatus Radlk. Chase 2047 K Australia EU720415 EU720577 EU720732 EU720928 EU721025 EU721169 EU721357 EU721534
Amesiodendron chinensis (Merr.) Hu Yuan s.n. NEU China EU720403 - EU720718 EU720917 - EU721155 EU721344 EU721525
Arfeuillea arborescens Pierre Chase 2122 K Bogor, BG EU720461 EU720629 EU720793 EU720962 EU721067 EU721229 EU721417 -
Arytera littoralis Blume Yuan s.n. NEU China EU720405 EU720566 EU720720 EU720919 EU721018 EU721157 EU721346 EU721527
Arytera littoralis Blume Chase 2123 K Bogor, BG EU720462 EU720630 EU720794 EU720963 EU721068 EU721230 EU721418 -
Atalaya alata (Sim) H. Forbes Edwards KE228 JCT South Africa EU720425 EU720593 EU720748 EU720939 EU721036 EU721184 EU721372 EU721543
Atalaya capense R.A. Dyer Edwards KE 509 jcT South Africa EU720429 - EU720752 - - EU721188 EU721376 -
Athyana weinmannifolia (Griseb.) Radlk. Pennington 17581 MO Peru EU720487 EU720649 EU720824 EU720975 EU721086 EU721257 EU721445 EU721576
Averrhoidium  dalyi Acev.-Rodr. & Ferrucci Weckerle 00/03/ Z Peru EU720495 - EU720836 - - EU721268 EU721456 -

18-1/1
Beguea apetala Capuron Buerki 149 NEU Madagascar EU720491 EU720652 EU720828 EU720978 EU721089 EU721261 EU721449 -
Beguea apetala Capuron Vary 40 MO Madagascar EU720512 EU720663 EU720856 - EU721100 EU721281 EU721469 -
Blighia sapida K.D. Koenig Edwards KE86 JCT West Africa EU720416 EU720578 EU720733 EU720929 EU721026 EU721170 EU721358 EU721535
Blomia prisca (Standl.) Lundell Acevedo 12242 us Mexico, Yucatan EU720444 EU720611 EU720772 - EU721050 EU721208 EU721396 -
Bridgesia incisifolia Bertero ex Cambess.  Killip & Pisano K Chile EU720476 EU720645 EU720811 EU720973 EU721082 EU721247 EU721435 -

39778
Cardiospermum  sp. Yuan s.n. NEU China EU720399 - EU720713 EU720912 - EU721150 EU721339 -
Chytranthus carneus Radlk. Chase 2868 RBG - EU720477 EU720646 EU720812 EU720974 EU721083 EU721248 EU721436 EU721575
Conchopetalum brachysepalum Capuron Rabarimanarivo 8 MO Madagascar EU720530 EU720680 EU720877 - EU721117 EU721299 EU721487 EU721586
Cubilia cubili (Blanco) Adelb. Chase 2125 K Bogor, BG EU720463 EU720631 EU720795 EU720964 EU721069 EU721231 EU721419 EU721567
Cupania dentata DC. Acevedo 12241 us Mexico, Yucatan EU720523 EU720670 EU720867 EU720988 EU721107 EU721289 EU721477 EU721581
Cupania hirsuta Radlk. Acevedo 1101 us French Guiana EU720521 EU720668 EU720865 - EU721105 EU721287 EU721475 -
Cupania rubiginosa (Poir.) Radlk. Mori 8868 MO French Guiana EU720481 - EU720817 - - EU721251 EU721439 -
Cupania scrobiculata Rich. Acevedo 11100 us French Guiana EU720524 EU720671 EU720868 EU720989 EU721108 EU721290 EU721478 -
Cupaniopsis anacardioides  Radlk. Chase 217 K Australia EU720438 EU720605 EU720763 EU720946 EU721045 EU721199 EU721387 EU721552
Cupaniopsis flagelliformis (Bailey) Radlk. Edwards KE42 JCT Australia EU720432 EU720598 EU720755 EU720942 - EU721191 EU721379 EU721547
Cupaniopsis fruticosa Radlk. Munzinger 564 MO New Caledonia EU720533 - EU720881 - EU721119 EU721302 EU721490 -
Cupaniopsis sp. Munzinger 710 MO New Caledonia EU720532 - EU720880 EU720996 - EU721301 EU721489 EU721587
Cupaniopsis sp. Munzinger 1103 MO New Caledonia EU720507 EU720660 EU720851 - EU721097 EU721278 EU721466 -
Deinbollia borbonica Scheff. Edwards KE197 JjcT Tanzania EU720412 EU720574 EU720729 - - EU721166 EU721354 EU721532
Deinbollia macrocarpa Capuron H. Razafindraibe MO Madagascar EU720535 EU720683 EU720883 - EU721121 EU721304 EU721492 EU721589

118
Deinbollia macrocarpa Capuron Buerki 144 NEU Madagascar EU720503 EU720656 EU720847 - EU721093 EU721275 EU721463 -
Deinbollia oblongifolia (E. Mey. ex Arn.) Edwards KE233 JjcT South Africa EU720427 EU720595 EU720750 - - EU721186 EU721374 EU721545

Radlk.

Deinbollia pervillei (Blume) Radlk. Phillipson 5919 MO Madagascar EU720395 EU720560 EU720708 - EU721012 EU721145 EU721334 -
Deinbollia pervillei (Blume) Radlk. Callmander 688 MO Madagascar EU720514 - EU720858 - - EU721283 EU721471 -

(continued on next page)
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N
Genera Species Author Voucher Herbarium Country GenBank Accession Nos.
ITS matK rpoB trnD-trnT  trnK-matK  trnL trnL-F trnS-trnG
Delavaya yunnanensis Franch. Forrest 20682 MO China, EU720484 - EU720821 - - EU721254 EU721442 -
Yunnan
Diatenopteryx  sorbifolia Radlk. Zardini 43371 MO Paraguay EU720534 EU720682 EU720882 - EU721120 EU721303 EU721491 EU721588
Dictyoneura obtusa Blume Edwards KE142 JCT Australia EU720428 - EU720751 - - EU721187 EU721375 -
Dimocarpus australianus Leenh. Edwards KE34 jcT Australia EU720433 - EU720757 - - EU721193 EU721381 -
Diploglottis campbelli Cheel Chase 2048 K Australian, EU720457 EU720624 EU720788 EU720960 EU721062 EU721224 EU721412 -
BG
Diplopeltis huegelii Endl. Chase 2192 K Australia EU720473 EU720642 EU720807 EU720971 EU721079 EU721243 EU721431 -
Dipteronia sinensis Oliv. Chase 502 RBG - EU720445 EU720612 EU720774 - - EU721210 EU721398 -
Dodonaea madagascariensis Radlk. Bocksberger GB028 ~ NEU Madagascar  EU720518 EU720862 EU720984 - EU721284 EU721472 -
Dodonaea viscosa Jacq. Razafitsalama 956 MO Madagascar  EU720519 EU720666 EU720863 EU720985 EU721103 EU721285 EU721473 -
Dodonaea viscosa Jacq. Merello 1077 MO Peru EU720536 EU720684 EU720884 EU720997 EU721122 EU721305 EU721493 -
Dodonaea viscosa Jacq. Yuan s.n. NEU China EU720406 EU720567 EU720721 EU720920 EU721019 EU721158 EU721347 -
Doratoxylon chouxii Capuron Labat JNL3543 P Madagascar  EU720394 EU720559 EU720707 EU720908 EU721011 EU721144 EU721333 - ©v
Doratoxylon chouxii Capuron Callmander 679 MO Madagascar  EU720513 EU720664 EU720857 - EU721101 EU721282 EU721470 - 3
Elattostachys  apetala Radlk. Munzinger 692 MO New EU720537 EU720685 EU720885 EU720998 EU721123 EU721306 EU721494 EU721590 ':f_
Caledonia .
Elattostachys ~ apetala Radlk. McPherson 18184 MO New EU720538 EU720686 EU720886 EU720999 EU721124 EU721307 EU721495 EU721591 g
Caledonia >
Elattostachys microcarpa S.T. Reynolds Edwards KE98 JCT Australia EU720409 EU720571 EU720726 - - EU721163 EU721351 - E
Elattostachys ~ nervosa (F. Muell.) Radlk. Chase 2022 K Australian, EU720455 EU720622 EU720786 EU720959 EU721060 EU721222 EU721410 EU721563 §
BG Iy
Elattostachys  sp. Lowry 5650A MO New EU720529 EU720679 EU720876 EU720994 EU721116 EU721298 EU721486 EU721585 é
Caledonia =
Eriocoelum kerstingii Gilg ex Engl. Merello 1586 MO Ghana EU720539 EU720687 EU720887 EU721000 EU721125 EU721308 EU721496 EU721592 "E
Eriocoelum microspermum Radlk. Bradley 1025 MO Gabon EU720540 EU720688 EU720888 EU721001 EU721126 EU721309 EU721497 EU721593 §
Euphorianthus longifolius Radlk. Chase 2126 K Bogor, BG EU720464 - EU720796 - - EU721232 EU721420 - >y
Eurycorymbus  cavalerieri (H. Lév.) Rehder & Hand.- Yuan s.n. NEU China EU720404 EU720565 EU720719 EU720918 EU721017 EU721156 EU721345 EU721526 §
Mazz.
Filicium decipiens (Wight & Arn.) Thwaites Chase 2128 K Bogor, BG EU720466 EU720633 EU720798 - - EU721234 EU721422 - g_
Filicium longifolium (H. Perrier) Capuron Rabenantonadro MO Madagascar  EU720541 - EU720889 - - EU721310 EU721498 - §
1113 3
Filicium thouarsianum (A. DC.) Capuron Antilahimena 5021 MO Madagascar ~ EU720493 - EU720832 - - EU721265 EU721453 - 2
Ganophyllum  falcatum Blume Chase 2129 K Bogor, BG EU720467 EU720634 EU720799 - EU721071 EU721235 EU721423 - ~
Glenniea pervillei (Baill.) Leenh. Andriamihajarivo MO Madagascar  EU720490 EU720651 EU720827 EU720977 EU721088 EU721260 EU721448 - §
1053 N
Gongrodiscus  bilocularis H.Turner Munzinger 749 MO New EU720542 EU720689 EU720890 - EU721127 EU721311 EU721499 - .%E
Caledonia :'7’1
Guioa glauca Radlk. McPherson 18230 MO New EU720545 EU720692 EU720893 - EU721130 EU721315 EU721503 - %
Caledonia
Guioa microsepala Radlk. Munzinger 744 MO New EU720546 EU720693 EU720894 - EU721131 EU721316 EU721504 EU721596
Caledonia
Guioa semiglauca (F. Muell.) Radlk. Chase 2058 K Australian, EU720458 EU720625 EU720789 - EU721063 EU721225 EU721413 -
BG
Guioa villosa Radlk. McPherson 18040 MO New EU720544 EU720691 EU720892 EU721003 EU721129 EU721314 EU721502 EU721595
Caledonia
Guioa sp. Munzinger 945 MO New EU720505 EU720658 EU720849 - EU721095 EU721277 EU721465 -
Caledonia
Haplocoelopsis  africana F.G. Davies Edwards KE276 Jjcr Tanzania EU720441 EU720608 EU720767 EU720949 - EU721203 EU721391 EU721555
Haplocoelum  foliosum (Hiern) Bullock Friis 1894 MO Ethiopia EU720479 - EU720815 - - EU721250 EU721438 -
Haplocoelum  foliosum subsp. foliosum (Hiern) Bullock Edwards KE195 JjcT Tanzania EU720410 EU720572 EU720727 EU720924 - EU721164 EU721352 EU721530
Haplocoelum  perrieri Capuron Rakotomalaza 1165 MO Madagascar  EU720396 - EU720709 EU720909 - EU721146 EU721335 EU721519
Harpullia arborea (Blanco) Radlk. Chase 1353 K Bogor, BG EU720448 - EU720779 - - EU721215 EU721403 -
Jagera Jjavanica (Blume) Blume ex Kalkman  Chase 2130 K Bogor, BG EU720468 EU720635 EU720800 - EU721072 EU721236 EU721424 EU721569
Jagera Jjavanica subsp. australiana Leenh. Edwards KE178 JcT Australia EU720442 - EU720769 - - EU721205 EU721393 EU721556
Koelreuteria paniculata Laxm. Harder 5668 MO Vietnam EU720548 EU720695 EU720896 - EU721133 EU721318 EU721506 -
Koelreuteria paniculata Laxm. Yuan CN2006-3 NEU China EU720397 EU720561 EU720710 - EU721013 EU721147 EU721336 EU721520



Koelreuteria
Laccodiscus
Lecaniodiscus
Lepiderema
Lepiderema

Lepidopetalum
Lepisanthes
Lepisanthes
Lepisanthes
Lepisanthes
Litchi
Llagunoa
Llagunoa
Loxodiscus

Macphersonia
Macphersonia

Majidea
Matayba
Matayba

Matayba
Matayba
Matayba

Matayba

Melicoccus

Melicoccus

Mischarytera
Mischocarpus
Mischocarpus
Mischocarpus
Mischocarpus

Molinaea

Molinaea
Neotina
Nephelium
Pancovia
Pappea
Paranephelium
Paranephelium
Paullinia
Paullinia

Plagioscyphus
Plagioscyphus
Podonephelium

Pometia
Pometia
Pseudima
Rhysotoechia
Sapindus

Sarcopteryx
Sarcopteryx

sp.
klaineanus
fraxinifolius
hirsuta
pulchella

fructoglabrum
alata
feruginea
rubiginosa
senegalensis
chinensis
mollis

nitida
coriaceus

chapelieri
gracilis

zanguebarika
apetala
cf. opaca

domingensis
elaeagnoides
guianensis

laevigata

bijugatus
lepidopetalus
sp.
exangulatus
grandissumus
pentapetalus
pyriformis

petiolaris

Sp. nov.
coursii

lappaceum (=N. chryseum)

golungensis
capensis
macrophyllum
xestophyllum
pinnata
subauriculata

aff. louvelii
unijugatus
homei

pinnata

pinnata

sp.

mortoniana
oligophyllus (=Aphania
oligophylla)

martyana

reticulata

Pierre ex Engl.
Baker

S.T. Reynolds
Radlk.

Welzen
(Blume) Leenh.
(Radlk.) Leenh.
(Roxb.) Leenh.
(Poir.) Leenh.
Sonn.

Kunth

Ruiz & Pav.
Hook. f.

(Baill.) Capuron
0. Hoffm.

Kirk ex Oliv.
Radlk.
Radlk.

(DC.) Radlk.
Radlk.
Aubl.

Radlk.

Jacq.

Radlk.

(F. Muell.) Radlk.
Radlk.

(Rox.) Radlk.

(F. Muell.) Radlk.

Radlk.

Capuron
L.

(Hiern) Exell & Mendonga

Eckl. & Zeyh.
King

Miq.

L.

Radlk.

Danguy & Choux
Capuron
Radlk.

J.R. Forst. & G. Forst.
J.R. Forst. & G. Forst.

(F. Muell.) Radlk.
Merr. & Chun

(F. Muell.) Radlk.
S.T. Reynolds

Harder 5724
Walters 1269
Edwards KE194
Edwards KE36
Chase 2020

Edwards KE139
Chase 1355

Chase 1354

Chase 1350
Callmander 627
Yuan s.n.
Jaramillollejia 3199
Pennington 17552
Bradford 1136

Buerki 138
Rabenantoandro
1081

TH275

Acevedo 11929
Acevedo 11118

Taylor 11819
Zardini 43278
Acevedo 12342

Acevedo 12357

Acevedo s.n.
Acevedo 11128
Edwards KE159
Edwards KE30
Edwards KE37
Chase 2133
Chase 2059

Rabenantoandro
1448

Antilahimena 4301
H. Razafindraibe 119
Yuan s.n.

Edwards KE231
Edwards KE232
Chase 1356
Edrwards KE503
Edwards KE199
Weckerle 00/03/19-
1/1

Lowry 6034

Buerki 145

Pillon 156

Chase 2135

Yuan s.n.
McPherson 15867
Edwards KE117
Yuan s.n.

Irvine IRV1810
Gray BG1137

MO
MO
jcT
jcT

jcT

MO
NEU
MO

MO

NEU
MO

MO
us
us

MO
MO
us

us

us
us
jcT
jcT
jct

MO
MO

NEU
jcT
jcT

jcT
jcT
z

MO
NEU
MO

K
NEU
MO
jcT
NEU

CSIRO
CSIRO

Vietnam
Gabon
Tanzania
Australia
Australian,
BG
Australia
Bogor, BG
Bogor, BG
Bogor, BG
Madagascar
China
Colombia
Peru

New
Caledonia
Madagascar
Madagascar

Madagascar
Jamaica
French
Guiana
Caribbean
Paraguay
French
Guiana
French
Guiana
Puerto Rico
Bolivia
Australia
Australia
Australia
Bogor, BG
Australian,
BG
Madagascar

Madagascar
Madagascar
China
Tanzania
South Africa
Bogor, BG
Asia
Tanzania
Peru

Madagascar
Madagascar
New
Caledonia
Bogor, BG
China
Panama
Australia
China

Australia
Australia

EU720547
EU720549
EU720418
EU720435
EU720454

EU720408
EU720450
EU720449
EU720446
EU720492
EU720400
EU720482
EU720486
EU720488

EU720459
EU720550

EU720552
EU720526
EU720522

EU720551
EU720553
EU720527

EU720528

EU927391
EU720443
EU720417
EU720434
EU720437
EU720470
EU720460

EU720554

EU720510
EU720543
EU720401
EU720411
EU720424
EU720451
EU720420
EU720413
EU720494

EU720555
EU720475
EU720489

EU720471
EU720402
EU720556
EU720414
EU720407

EU720426
EU720421

EU720694
EU720696
EU720580
EU720601

EU720618
EU720617
EU720614
EU720654
EU720564

EU720627
EU720697

EU720674
EU720669

EU720698
EU720699
EU720675

EU720676

EU720610
EU720579
EU720600
EU720604
EU720637
EU720628

EU720700

EU720662
EU720690
EU720573
EU720592
EU720619
EU720582
EU720575

EU720701
EU720644
EU720650

EU720638
EU720702
EU720576
EU720568

EU720594
EU720587

EU720895
EU720897
EU720735
EU720759
EU720785

EU720724
EU720781
EU720780
EU720776
EU720830
EU720715
EU720818
EU720823
EU720825

EU720791
EU720898

EU720900
EU720871
EU720866

EU720899
EU720901
EU720872

EU720873

EU720771
EU720770
EU720734
EU720758
EU720762
EU720802
EU720792

EU720902

EU720854
EU720891
EU720716
EU720728
EU720747
EU720782
EU720737
EU720730
EU720833

EU720903
EU720809
EU720826

EU720803
EU720717
EU720904
EU720731
EU720722

EU720749
EU720741

EU721004

EU720931
EU720958

EU720922

EU720952
EU720979
EU720914

EU720961
EU721005

EU721006

EU720987

EU720992

EU720930
EU720943
EU720945
EU720966

EU721007

EU720983
EU721002
EU720915
EU720925
EU720938
EU720955

EU720926

EU721008
EU720972
EU720976

EU720967
EU720916
EU721009
EU720927
EU720921

EU720940

EU721132
EU721134
EU721028
EU721041

EU721056
EU721055
EU721052
EU721091
EU721016

EU721065
EU721135

EU721111
EU721106

EU721136
EU721137
EU721112

EU721113

EU721049
EU721027
EU721040
EU721044
EU721074
EU721066

EU721138

EU721099
EU721128
EU721022
EU721035
EU721057
EU721029
EU721023

EU721139
EU721081
EU721087

EU721075
EU721140
EU721024
EU721020

EU721037
EU721033

EU721317
EU721319
EU721172
EU721195
EU721221

EU721161
EU721217
EU721216
EU721212
EU721263
EU721152
EU721252
EU721256
EU721258

EU721227
EU721320

EU721322
EU721293
EU721288

EU721321
EU721323
EU721294

EU721295

EU721207
EU721206
EU721171
EU721194
EU721198
EU721238
EU721228

EU721324

EU721280
EU721313
EU721153
EU721165
EU721183
EU721218
EU721174
EU721167
EU721266

EU721325
EU721245
EU721259

EU721239
EU721154
EU721326
EU721168
EU721159

EU721185
EU721178

EU721505
EU721507
EU721360
EU721383
EU721409

EU721349
EU721405
EU721404
EU721400
EU721451
EU721341
EU721440
EU721444
EU721446

EU721415
EU721508

EU721510
EU721481
EU721476

EU721509
EU721511
EU721482

EU721483

EU721395
EU721394
EU721359
EU721382
EU721386
EU721426
EU721416

EU721512

EU721468
EU721501
EU721342
EU721353
EU721371
EU721406
EU721362
EU721355
EU721454

EU721513
EU721433
EU721447

EU721427
EU721343
EU721514
EU721356
EU721159

EU721373
EU721366

EU721536
EU721549

EU721528

EU721558
EU721577
EU721522

EU721566
EU721597

EU721583
EU721580

EU721598

EU721551
EU721571

EU721578
EU721594
EU721523
EU721531
EU721542

EU721599
EU721574

EU721572
EU721524
EU721600
EU721533

EU721544
EU721539

(continued on next page)

85Z-8€ (600Z) 1S uounjoag pup s313auasojAyd DnIAJO /v 32 1yLang 'S

GS¢T



Appendix (continued)

Genera Species Author Voucher Herbarium  Country GenBank Accession Nos.

ITS matK rpoB trnD-trnT trnK-matK  trnL trnL-F trnS-trnG
Sarcopteryx sp. - Edwards KE49 JjcT Australia EU720439 EU720607 EU720765 EU720948 EU721047 EU721201 EU721389 EU721554
Sarcotoechia  serrata S.T. Reynolds Edwards KE31 JcT Australia EU720436 EU720603 EU720761 EU720944 EU721043 EU721197 EU721385 EU721550
Sarcotoechia  villosa S.T. Reynolds Edwards KE102 JcT Australia EU720419 EU720581 EU720736 - - EU721173 EU721361 -
Schleichera oleosa (Lour.) Oken Chase 2137 K Bogor, BG EU720423 EU720591 EU720746 EU720937 - EU721182 EU721370 EU721541
Serjania altissima (Poepp.) Radlk. Weckerle 00/07/02-1/4 Z Peru EU720498 - EU720840 - - EU721269 EU721457 -
Serjania communis Cambess. Chase 2138 K Bogor, BG EU720472 EU720640 EU720805 EU720969 EU721077 EU721241 EU721429 -
Serjania glabrata Kunth Merello 1058 MO Peru EU720557 EU720703 EU720905 EU721010 EU721141 EU721327 EU721515 -
Storthocalyx  sp. Munzinger 960 MO New Caledonia EU720504 EU720657 [EU720848 - EU721094 EU721276 EU721464 -
Synima macrophylla S.T. Reynolds Edwards KE19 jct Australia EU720430 EU720596 EU720753 EU720941 - EU721189 EU721377 EU721546
Talisia angustifolia Radlk. Zardini 43668 MO Paraguay EU720558 EU720705 EU720907 - EU721143 EU721328 EU721516 -
Talisia nervosa Radlk. Pennington 628 MO - EU720474 EU720643 EU720808 - EU721080 EU721244 EU721432 -
Talisia obovata A.C. Sm. R.Lombello 13 MO Brazil EU720485 EU720648 EU720822 - EU721085 EU721255 EU721443 -
Thouinia acuminata S. Watson Liston 633-2 MO Mexico, Jalisco  EU720478 EU720647 EU720814 - EU721084 EU721249 EU721437 -
Tina isaloensis Drake Ranirison PR827 G Madagascar EU720520 EU720667 EU720864 EU720986 EU721104 EU721286 EU721474 EU721579
Tina striata Radlk. Vary 45 MO Madagascar EU720509 EU720661 EU720853 - EU721098 EU721279 EU721467 -
Tinopsis apiculata Radlk. Buerki 131 NEU Madagascar EU720422 EU720589 EU720744 EU720936 EU721034 EU721180 EU721368 EU721540
Toechima erythrocarpum  (F. Muell.) Radlk. Edwards KE20 JjcT Australia EU720431 EU720597 EU720754 - EU721038 EU721190 EU721378 -
Toechima plurinerve Radlk. Chase 1357 K Bogor, BG EU720452 EU720620 EU720783 EU720956 EU721058 EU721219 EU721407 EU721561
Toechima tenax (Cunn. ex Benth.) Radlk.  Chase 2046 K Australian, BG EU720456 EU720623 EU720787 - EU721061 EU721223 EU721411 EU721564
Toechima tenax (Cunn. ex Benth.) Radlk.  Chase 2132 K Bogor, BG EU720469 EU720636 EU720801 EU720965 EU721073 EU721237 EU721425 EU721570
Tristiropsis acutangula Radlk. Chase 1358 K Bogor, BG EU720453 EU720621 EU720784 EU720957 EU721059 EU721220 EU721408 EU721562
Urvillea ulmaceae Kunth Weckerle 00/07/05-1/1 Z Peru EU720499 EU720655 EU720841 - EU721092 EU721270 EU721458 -
Vouarana guianensis Aubl. Lucas 109 MO French Guiana = EU720525 EU720673 EU720870 EU720991 EU721110 [EU721292 EU721480 EU721582
Xanthoceras  sorbifolium Bunge Yuan CN2006 NEU China EU720398 EU720562 EU720711 EU720910 EU721014 EU721148 EU721337 -
Outroup
Sorindeia sp. Buerki 137 NEU Madagascar - - EU720831 - - EU721264 EU721452 -
Harrisonia abyssinica Oliv. Edwards KE510 JjcT Tanzania EU720440 - EU720766 - - EU721202 EU721390 -
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