

Machine Translation Evaluation

Eva Forsbom

evafo@stp.ling.uu.se

Uppsala University

Evaluation Standardisation Efforts

UPPSALA UNIVERSITET

	ISO	LISA
	Software	$/ \setminus$
	Quality	/ \
		/ \
	EAGLES	QA Segmentation
	Framework	
/		
Writing	Dialogue ISLE	SAE
Aids	Systems Taxonomy	

Quality Attributes

- UPPSALA UNIVERSITET
- **ISO 8402:** "The totality of features and characteristics of a product or service that bears on its ability to satisfy stated or implied needs"

ISO/IEC 9126 series: Product quality

ISO/IEC 14598 series: Software product evaluation

- Functionality
- Reliability
- Usability
- Efficiency
- Maintainability
- Portability

UNIVERSITET

Evaluation Context

- For whom?
- Why?
- What?
- By whom?
- How?

For Whom?

UPPSALA UNIVERSITET

Different users have different needs. The quality attributes should be picked and weighted accordingly.

- Consumer agency
- Manager
- Developer
- Experienced user
- Consumer

• ...

The purpose of the evaluation depends on the kind of user it is done for, and on the maturity of the product. There is a type of evaluation for each purpose... Some examples:

Туре	Purpose
Feasability	See if the product is needed/worth developing
Diagnostic	Trace errors
Progressive	See changes between product versions
Adequacy	See if the product is adequate for a certain task
Performance	Compare different systems

What?

UPPSALA UNIVERSITET

Depending on user and purpose, attributes at an appropriate level of specificity should be chosen for evaluation. Weighted results for specific attributes could be combined into a higher level attribute.

ſ	$\begin{bmatrix} suitability : true \end{bmatrix}$		
	accuracy: 60%		
$\int functionality:$	$\left interoperability: xx \right $		
	security: high		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
reliability:7			
usability: good			
efficiency: basic			
maintainability: xx			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	-		

By Whom?

UPPSALA UNIVERSITET

The different types of evaluations requires different kinds of evaluators with different backgrounds. Some evaluations could be performed automatically, some not.

- Evaluation agency
- Business Manager
- Developer
- Domain expert
- Experienced user
- Bilingual user
- Consumer
- ...

The evaluation process can be divided into three general stages:

- 1. Defining the quality requirements
 - requirements analysis
 - evaluation modelling
- 2. Preparing the evaluation
 - quality metrics selection
 - rating levels definition
 - assessment criteria definition
- 3. Proceeding with the evaluation
 - measurement
 - rating
 - assessment

UNIVERSITET

MT Evaluation Smorgasbord

http://www.issco.unige.ch/projects/isle/taxonomy2/
Using ISLE's MT Evaluation Taxonomy, evaluators can slide
down a tree of increasingly specific quality attributes and find
appropriate measures for evaluating them. It has two entry
points, which are both mapped to the metrics.

- 1 Specifying user needs 2 Sy The purpose of evaluation The object of evaluation Characteristics of the translation task Assimilation Dissemination Communication User characteristics Input characteristics (author and text)
- 2 System characteristics to be evaluated System internal characteristics MT system-specific characteristics sk Model of translation process Linguistic resources and utilities Characteristics of the intended mode System external characteristics Functionality c) Reliability Usability Efficiency Maintainability Portability Cost

Blackbox Evaluation

UPPSALA UNIVERSITET

In cases where the evaluator has no possibility to see output from the system components, or for high level quality attribute evaluation, a blackbox evaluation is appropriate. Then, only the input, possible settings, and output are known.

	Input	Overview					
Words	Total:	11192	Unique:	2393 (21.38%)			
Segments	Total: 1772		Unique:	1187 (66.99%)			
System Recall							
Words							
Source Language Words	Total:	11025 (98.	51%) Unique:	2322 (97.03%)			
Segments							
Fully Translated	Total:	594 (33.	52%) Unique:	210 (17.69%)			
Translated	Total:	678 (38.	26%) Unique:	285 (24.01%)			

Glassbox Evaluation

UPPSALA UNIVERSITET

In cases where the evaluator has possibility to see output from the system components, or for low level quality attribute evaluation, a glassbox evaluation is appropriate. Then, input, possible settings, and output to some or all components are known.

Error Reports								
	Words							
Source Language Words	Total:	167	Unique:	71				
Translation Links	Total:	1795	Unique:	371				
Target Language Words	Total:	18	Unique:	3				
Target Language Code	Total:	7	Unique:	1				
Segments								
Not Parsed	Total:	347	Unique:	304				
Partially Parsed	Total:	712	Unique:	577				
Not Transferred	Total:	15	Unique:	б				
Not Generated	Total:	17	Unique:	12				

Evaluating Translation Quality

UPPSALA UNIVERSITET

Translation quality is usually evaluated by comparison of the translated text to the source text (by bilingual evaluators) or to a reference translation (by monolingual evaluators). Some evaluations could be performed automatically.

- Fidelity (how close)
- Correctness (how correct)
- Adequacy (how adequate)
- Informativeness (how informative)
- Intelligibility (how understandable)
- Fluency (how fluent)

Manual Evaluation – Tests

- Grading
- Cloze test
- Comprehension test
- Task-based test
- Reading time
- Typing
- Post-editing

UNIVERSITET

(Doyon, Taylor, and White, 1998)

- 5 All meaning expressed in the source fragment appears in the translation fragment
- 4 Most of the source fragment meaning is expressed in the translation fragment
- 3 Much of the source fragment meaning is expressed in the translation fragment
- 2 Little of the source fragment meaning is expressed in the translation fragment
- 1 None of the meaning expressed in the source fragment is expressed in the translation fragment

UNIVERSITET

Example: Adequacy Test for LREC'02

(http://stp.ling.uu.se/~evafo/lrec_eval/)

- 1 2 3 4 5 **Source:** Prévenir ses enfants des problèmes de drogue
- •••••
 Reference: Prevent your children from having drug problems
 Translation: Prevent your children from drug problems

UNIVERSITET

Manual Evaluation – Problems

The hat is fat.

The cat is fat.

The hat is fat.

Semi-Automatic Evaluation

UPPSALA UNIVERSITET

Semi-automatic evaluation usually involves some form of manual mark-up, followed by automatic comparison and computation, e.g. by certain words, constructions, or information units.

- Named entity translation
- Syntactic correctness
- Domain terminology translation
- Information unit translation
- Test suite creation

(Reeder et al. 2001)

In this evaluation, some human annotators marks up named entities (NE) in a reference translation. All unique NE's from the reference translation are then searched in the translations, and all unique occurrences counted. Some normalisation processes could also be applied.

- Only relevant when many NE's.
- Depends on the annotators' consistency.
- Depends on the reference translation quality.

Automatic Evaluation

UPPSALA UNIVERSITET

Automatic evaluation is usually some form of approximate string matching or a count of mark-ups. If there exist advanced linguistic resources for the languages under scrutiny, much mark-up could be done automatically.

- Edit distance
- N-gram occurrence
- Number of untranslated words
- (Named entity translation)
- (Syntactic correctness)
- (Domain terminology translation)
- (Information unit translation)
- (Test suite creation and evaluation)

UNIVERSITET

Example: Word Accuracy

(Alshawi et al. 1998)

$$\mathsf{WA} = \left(1 - \frac{d+s+i}{r}\right)$$

where

- d = deletions
- $s = {\sf substitutions}$
- i = insertions
- r =length of reference

Word Accuracy Problem

UPPSALA UNIVERSITET

The original word accuracy measure could result in a score less than 0, as in the following example:

- Src: Tätningsring
- **Cand:** Sealing ring
 - Ref: Seal

$$\left(1 - \frac{1+1+0}{1}\right) = -1$$

Revised Word Accuracy

WArev =
$$\left(1 - \frac{d+s+i}{\max(r,c)}\right)$$

where

- d = deletions
- s = substitutions
- i = insertions
- r =length of reference
- c =length of candidate

Word Accuracy vs. Revised Word Accuracy

UPPSALA UNIVERSITET

UNIVERSITET

Word Accuracy Weaknesses

- Sensitive to word order reversal
- Only evaluated against one reference translation at a time
 - Src: Cylinder, underdel
- Cand: Bottom cylinder
 - Ref: Cylinder bottom
 - Src: Ledningsnät för bränslepump
- **Cand:** Cable harness for fuel pump
 - **Ref:** Fuel pump cable harness

N-Gram Occurrence

UPPSALA UNIVERSITET

N-gram occurrence is a way of measuring if words are correctly translated (1-grams) and if the translation is idiomatic (n > 1). It seems to correlate well with human evaluation of accuracy and fluency.

BLEU (Papineni et al. 2001)

- Grade = [0, 1];
- Compensates for difference in length by a brevity penalty;
- Applies equal weights for all n-grams.

NIST (DARPA 2001(?))

- Grade = $[0,\infty)$;
- Compensates for difference in length by another brevity penalty;
- Applies different weights for the n-grams.

UNIVERSITET

Example: BLEU

 $\mathsf{BLEU} = \mathsf{BP} \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$

where

$$\mathsf{BP} = \begin{cases} 1 & \text{if } c > r \\ \mathsf{e}^{\left(1 - \frac{r}{c}\right)} & \text{if } c \le r \end{cases}$$

r =length of reference

c =length of candidate

$$N = 4$$

$$w = \frac{1}{N}$$

$$p = \frac{\sum_{C \in \{Candidates\}} \sum_{n \in \{Candidates\}} Count_{clip}(n)}{\sum_{C \in \{Candidates\}} \sum_{n \in \{Candidates\}} Count(n)}$$

BLEU Problem

UPPSALA UNIVERSITET

The original BLEU measure is not defined for all cases, as in the following examples:

- Src: Cylinder, underdel
- Cand: Bottom cylinder
 - Ref: Cylinder bottom
 - Src: Ledningsnät för bränslepump
- **Cand:** Cable harness for fuel pump
 - **Ref:** Fuel pump cable harness

N-MEAN – Revised BLEU

$$\mathsf{N}\text{-}\mathsf{MEAN} = \mathsf{BP} \cdot \sum_{n=1}^{N} w_n p_n$$

where

$$\mathbf{N} = \begin{cases} N_{max} & \text{if } c \ge N_{max} \\ c & \text{if } c < N_{max} \end{cases}$$

BLEU vs. N-MEAN

UPPSALA UNIVERSITET

N-Gram Occurrence Weakness

- Sensitive to word errors (particularly mid-segment)
- Cand: The cats is fat
 - **Ref:** The cat is fat

UNIVERSITET

Ongoing and Future Work

- Applying these automatic measures on another text type
- Applying these automatic measures on another domain
- Applying these automatic measures on another language pair
- Applying these automatic measures with only one reference translation
- Using other automatic measures
- Using more linguistic measures

UNIVERSITET

References

- Alshawi et al. Automatic acquisition of hierarchical transduction models for machine translation. In *Proceedings of the ACL'98*, pp. 41–47, Montreal, Canada, 1998.
- DARPA. Automatic evaluation of machine translation quality using n-gram co-occurrence statistics, 2001(?).
- Doyon et al. The DARPA machine translation evaluation methodology: Past and present. In *Proceedings of AMTA'98*, Philadelphia, PA, 1998.
- EAGLES (Expert Advisory Group on Language Engineering Standards)

http://issco-www.unige.ch/projects/eagles/

UNIVERSITET

References...

- ISLE (International Standards for Language Engineering) http://www.issco.unige.ch/projects/isle
- ISO (International Organization for Standardization) http://www.iso.org
- LISA (Localization Industry Standards Association) http://www.lisa.org
- Papineni et al. BLEU: a method for automatic evaluation of machine translation. IBM RC22176 (W0109-022), IBM Research Division, T. J. Watson Research Center, 2001.

UNIVERSITET

References...

- Reeder et al. The naming of things and the confusion of tongues: an MT metric. In *Proceedings of the MT Evaluation Workshop: Who Did What To Whom, MT Summit VIII*, pp. 55–59, Santiago de Compostela, Spain, 2001.
 - SAE (Society of Automotive Engineers).

```
http://www.sae.org/
```