
Bootloader Library Help

MPLAB Harmony Integrated Software Framework v1.07.01

Copyright (c) 2013-2016 Microchip Technology Inc. All rights reserved.



Bootloader Library Help 
This section describes the Bootloader Library that is available in MPLAB Harmony.

Introduction 
This library provides a software Bootloader Library that is available on the Microchip family of microcontrollers with a convenient C 
language interface.

Description

The Bootloader Library can be used to upgrade firmware on a target device without the need for an external programmer or 
debugger.

A demonstration application, which can be downloaded into the target PIC32 device using the bootloader is included, which 
provides a personal computer host application to communicate with the bootloader firmware running inside the PIC32 device. This 
personal computer application is used to perform erase and programming operations.

This library was developed based on the Microchip application note, AN1388 "PIC32 Bootloader" (DS01388).

Using the Library 
This topic describes the basic architecture of the Bootloader Library and provides information and examples on its use.

Description

Interface Header File: bootloader.h

The interface to the Bootloader Library is defined in the bootloader.h header file. Any C language source (.c) file that uses the 
Bootloader Library should include bootloader.h.

Library File:

The Bootloader Library archive (.a) file is installed with MPLAB Harmony.

Please refer to the What is MPLAB Harmony? section for how the Bootloader Library interacts with the framework.

Abstraction Model 
This library provides the low-level abstraction of the Bootloader Library module on the Microchip family of microcontrollers with a 
convenient C language interface. This topic describes how that abstraction is modeled in the software and introduces the library 
interface.

Description

Bootloader Software Abstraction Block Diagram

Bootloader Library Help Using the Library Library Overview

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 2

http://ww1.microchip.com/downloads/en/AppNotes/01388B.pdf


Library Overview 
The Library Interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the 
Bootloader Library module.

How the Library Works 
This topic provides information on how the library works.

Description

The bootloader library is implemented using a framework. The bootloader firmware communicates with the personal computer 
host application by using a predefined communication protocol.

The following figure illustrates the bootloader architecture. The bootloader framework provides several API functions, which can 
be called by the bootloader application and the data stream layer. The bootloader framework assists the user to easily modify the 
bootloader application to adapt to different requirements. Refer to the Library Interface section for the available APIs. 

Basic Flow of the Bootloader 

Describes the basic flow of the PIC32 Bootloader

Description

The Bootloader code starts executing on a device Reset. If there are no conditions to enter the firmware upgrade mode, the 
Bootloader starts executing the user application. The Bootloader performs Flash erase/program operations while in the firmware 
upgrade mode.

Entering the Firmware Upgrade Mode

On a device Reset, the Bootloader forces itself into the firmware upgrade mode if the content of the user application’s reset vector 

Bootloader Library Help Using the Library How the Library Works

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 3



address is erased. To manually force the Bootloader into the firmware upgrade mode, press and hold the switch, S3, on the 
Explorer 16 Development Board during power-up. On PIC32 starter kits, press and hold the switch, SW3, during power-up. While 
in firmware upgrade mode, the LED labeled D5 on the Explorer 16 Development Board and the LED labeled LED3 on the PIC32 
starter kit will blink.

Exiting the Firmware Upgrade Mode

For USB HID, Ethernet, or the UART Bootloader, the firmware upgrade mode can be exited either by applying a hard Reset to the 
device, or by sending a “Jump to Application” command from the PC. For the USB Flash drive or SD card Bootloader, the 
firmware upgrade mode is exited either by a hard Reset or upon completion of firmware programming. 

 Note: The  Bootloader  should  disable  and  clear  any  enabled  interrupts  before  running  the  user  application.  The  stray
interrupts from the Bootloader may interfere with the user application and cause the application to fail. If applicable,
interrupts and peripherals should be reinitialized in the user application.

Bootloader Placement in Memory 

Describes the two schemes for Bootloader placement in memory.

Description

Figure 1 illustrates two schemes for the Bootloader placement based on the size of the Bootloader. Bootloaders that are smaller in 
size are placed within the PIC32 boot Flash memory. Fitting the Bootloader application within the boot Flash memory provides the 
complete program Flash memory for the user application.

In the case of Bootloaders that exceed the size of PIC32 boot Flash, the Bootloader is split into two parts. The Interrupt Vector 
Table (IVT) and the C start-up code are placed in boot Flash, and the remaining portion of the Bootloader is placed inside the 
program Flash.

Figure 1: Bootloader Placement

Handling Device Configuration Bits 

Provides information on how device Configuration bits are handled.

Bootloader Library Help Using the Library How the Library Works

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 4



Description

The Bootloader does not erase or write the device Configuration words while programming the new application firmware. This is 
because the device Configuration words settings are shared by both the Bootloader and the user application. Any modification to 
the device Configuration words may make the Bootloader non-functional. Therefore, it is highly recommended to have common 
device Configuration words settings for both the user application and the Bootloader.

Demonstration Application 

Provides information on the demonstration applications that can be used with the Bootloader.

Description

Refer to the following sections for information on the demonstrations that are available for the Bootloader:

• Applications Helps > Bootloader Demonstrations

• Applications Help > Examples > Peripheral Library Examples > dma_led_pattern

Using the Bootloader Application (UART, USB HID, and Ethernet Bootloaders) 

Provides information on using the Bootloader application.

Description

Use the following procedure to run the UART/USB HID/Ethernet Bootloader:

1. Select the specific hardware setup for the selected Bootloader.

2. With a debugger or programmer, program the Bootloader into the device using Release Build.

3. Run PIC32UBL.exe, which is located in the ..\PC_Application\ folder.

4. Depending on the Bootloader workspace used, enable either the USB, Serial port, or Ethernet using the Communication 
Settings menu in the PC application:

• For the Serial Port Bootloader, the default baud rate is 115200

• For the USB Bootloader, the default values of Vendor ID number (VID) and Product ID number (PID) are 0x4D8 and 0x03C, 
respectively

• For the Ethernet Bootloader, the default IP address is 192.168.1.11

5. If you are using the Ethernet Bootloader, set the IP address and subnet mask of the PC to 192.168.1.12 and 255.255.255.0, 
respectively.

6. To enter the firmware upgrade mode, use the procedure as described in Entering the Firmware Upgrade Mode in Basic Flow 
of the Bootloader.

7. Depending on the type of Bootloader programmed, connect the serial cable, micro-USB cable, or the Ethernet (RJ-45) 
crossover cable to the Explorer 16 Development Board.

8. Click Connect. The device connects and the Bootloader version information is read.

9. Click Load Hex file, and browse to the Demo_Application folder.

10. Select the specific demonstration application file, Demo_App_Explorer16.hex/Demo_App_PIC32_Starter_Kits.hex, 
located in the Firmware\Demo_Application folder.

11. Click Erase to erase the device.

12. Click Program to program the previously loaded .hex file into the device Flash.

13. Click Verify to verify the Flash contents. If the Flash is written correctly, the “Verification successful” message is displayed in 
the console.

14. Click Run Application. Optionally, steps 11, 12 and 13 can be performed as a single action by clicking 
Erase-Program-Verify.

15. Once the device starts running the programmed application firmware, the PC application will not be able to communicate with 
the device. To reconnect to the Bootloader, return to step 6.

Bootloader Communication Protocol (UART, USB HID, and Ethernet) 

Provides information on the Bootloader communication protocol.

Bootloader Library Help Using the Library How the Library Works

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 5



Description

The PC host application uses a communication protocol to interact with the Bootloader firmware. The PC host application acts as 
a master and issues commands to the Bootloader firmware to perform specific operations.

Frame Format

The communication protocol follows the frame format, as shown in Example 1. The frame format remains the same in both 
directions, that is, from the host application to the Bootloader, and from the Bootloader to the host application.

Example 1: Frame Format 
[<SOH>…]<SOH>[<DATA>…]<CRCL><CRCH><EOT>
Where:
 <...> Represents a byte
 [...] Represents an optional or variable number of bytes

The frame starts with a control character, Start of Header (SOH), and ends with another control character, End of Transmission 
(EOT). The integrity of the frame is protected by two bytes of Cyclic Redundancy Check (CRC)-16, represented by CRCL 
(low-byte) and CRCH (high-byte).

Control Characters

Some bytes in the Data field may imitate the control characters, SOH and EOT. The Data Link Escape (DLE) character is used to 
escape such bytes that could be interpreted as control characters. The Bootloader always accepts the byte following a <DLE> as 
data, and always sends a <DLE> before any of the control characters.

Table 1: Control Character Descriptions 

Control Hex Value Description

<SOH> 0x01 Marks the beginning of a frame.

<EOT> 0x04 Marks the end of a frame.

<DLE> 0x10 Data link escape.

Commands

The PC host application can issue the commands listed in Table 2 to the Bootloader. The first byte in the data field carries the 
command. 

Command Value in Hexadecimal Description

0x01 Read the Bootloader version information.

0x02 Erase the Flash.

0x03 Program the Flash.

0x04 Read the CRC.

0x05 Jump to the application.

Read Bootloader Version Information

The PC host application request for version information to the Bootloader is shown in Example 2.

Example 2: Request 
[<SOH>…]<SOH>[<0x01>]<CRCL><CRCH><EOT>

The Bootloader responds to the PC request for version information in two bytes, as shown in Example 3.

Example 3: Response 
[<SOH>…]<SOH><0x01><MAJOR_VER><MINOR_VER>
<CRCL><CRCH><EOT>
 
Where:
MAJOR_VER = Major version of the Bootloader
MINOR_VER = Minor version of the Bootloader

Erase Flash

On receiving the erase Flash command from the PC host application, the Bootloader erases that part of the program Flash, which 
is allocated for the user application. The request frame from the PC host application to the Bootloader is shown in Example 4.

Example 4: Request 

Bootloader Library Help Using the Library How the Library Works

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 6



[<SOH>…]<SOH><0x02><CRCL><CRCH><EOT>

The response frame from the Bootloader to the PC host application is shown in Example 5.

Example 5: Response 
[<SOH>…]<SOH><0x02><CRCL><CRCH><EOT>

Program Flash

The PC host application sends one or multiple hex records in Intel Hex format along with the program Flash command. The 
MPLAB C32 compiler generates the image in the Intel Hex format. Each line in the Intel hexadecimal file represents a 
hexadecimal record. Each hexadecimal record starts with a colon (:) and is in ASCII format. The PC host application discards the 
colon and converts the remaining data from ASCII to hexadecimal, and then sends the data to the Bootloader. The Bootloader 
extracts the destination address and data from the hex record, and writes the data into program Flash.

The request frame from the PC host application to the Bootloader is shown in Example 6.

Example 6: Request 
[<SOH>…]<SOH><0x03>[<HEX_RECORD>…]<CRCL>
<CRCH><EOT>
 
Where:
HEX_RECORD is the Intel Hex record in hexadecimal format

The response from the Bootloader to the PC host application is shown in Example 7.

Example 7: Response 
[<SOH>…]<SOH><0x03><CRCL><CRCH><EOT>

Read CRC

The read CRC command is used to verify the content of the program Flash after programming. The request frame from the PC 
host application to the Bootloader is shown in Example 8.

Example 8: Request 
[<SOH>…]<SOH><0x04><ADRS_LB><ADRS_HB>
<ADRS_UB><ADRS_MB><NUMBYTES_LB><NUMBYTES_HB>
<NUMBYTES_UB><NUMBYTES_MB><CRCL><CRCH><EOT>

ADRS_LB, ADRS_HB, ADRS_UB and ADRS_MB, as shown in Example 8, represent the 32-bit Flash addresses from where the CRC 
calculation begins.

NUMBYTES_LB, NUMBYTES_HB, NUMBYTES_UB and NUMBYTES_MB, as shown in Example 8, represent the total number of bytes 
in 32-bit format for which the CRC is to be calculated.

The response from the Bootloader to the PC host application is shown in Example 9.

Example 9: Response 
[<SOH>…]<SOH><0x04><FLASH_CRCL><FLASH_CRCH>
<CRCL><CRCH><EOT>

Jump to Application

The Jump to Application command from the PC host application commands the Bootloader to execute the application. The 
request frame from the PC host application to the Bootloader is shown in Example 10.

Example 10: Request 
[<SOH>…]<SOH><0x05><CRCL><CRCH><EOT>

There is no response to this command from the Bootloader because the Bootloader immediately exits the firmware upgrade mode 
and begins executing the application.

Considerations While Moving the Application Image 

Describes the procedure to place a user application into a desired program Flash memory region

Description

This section describes the procedure to place a user application into a desired program Flash memory region. It must be ensured 
that the user application’s memory region does not overlap with the memory region reserved for the Bootloader.

1. Create a new text file and save it with a .ld file extension.

2. Add the new *.ld file to your project. The new *.ld file appears in the project tree.

3. Starting with the default linker script is easier than starting from the scratch. Use a text editor to copy the contents of the 
\pic32mx\lib\ldscripts\elf32pic32mx.x default linker script into the newly created *.ld file. The INCLUDE 
procdefs.ld directive should be replaced with the contents of the device-specific 

Bootloader Library Help Using the Library How the Library Works

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 7



\pic32mx\lib\proc\device\procdefs.ld portion of the linker script. The path \pic32mx\lib is located within the 
folder where the XC32 compiler tools are installed.

4. Edit the newly created *.ld file to remap the linker script memory regions exception_mem, kseg0_boot_mem, 
kseg1_boot_mem and kseg0_program_mem into the program Flash reserved for the user application. The exception_mem 
must align on a 4K address boundary of the program Flash as shown in Example 11.

 Note: For  more  information  on  linker  script  memory  regions,  refer  to  the  “MPLAB®  Assembler,  Linker  and  Utilities  for
PIC32  MCUs  User’s  Guide”  (DS50001833)  and  the  “MPLAB®  C  Compiler  for  PIC32  MCUs  User’s  Guide”
(DS50001686).

Example 11: Lines to Modify in Application Linker Script 
/*************************************************************************
 * Processor-specific object file. Contains SFR definitions.
 *************************************************************************/
INPUT("processor.o")
 
/*************************************************************************
 * For interrupt vector handling
 *************************************************************************/
PROVIDE(_vector_spacing = 0x00000001);
/* _ebase_address value must be same as the ORIGIN value of exception_mem (see below) */
_ebase_address = 0x9D000000;
 
/*************************************************************************
 * Memory Address Equates
 *************************************************************************/
 /* Equate _RESET_ADDR to the ORIGIN value of kseg1_boot_mem (see below) */
_RESET_ADDR              = (0x9D000000 + 0x1000 + 0x970);
 
/*Map _BEV_EXCPT_ADDR and _DBG_EXCPT_ADDR in to kseg1_boot_mem (see below) */
/* Place _BEV_EXCPT_ADDR at an offset of 0x380 to _RESET_ADDR */
/* Place _DBG_EXCPT_ADDR at an offset of 0x480 to _RESET_ADDR */
 
_BEV_EXCPT_ADDR          = (0x9D000000 + 0x1000 + 0x970 + 0x380);
_DBG_EXCPT_ADDR          = (0x9D000000 + 0x1000 + 0x970 + 0x480);
 
_DBG_CODE_ADDR           = 0xBFC02000;
_DBG_CODE_SIZE           = 0xFF0     ;
_GEN_EXCPT_ADDR          = _ebase_address + 0x180;
 
/*************************************************************************
 * Memory Regions
 *
 * Memory regions without attributes cannot be used for orphaned sections.
 * Only sections specifically assigned to these regions can be allocated
 * into these regions.
 *************************************************************************/
MEMORY
{
  /* IVT is mapped into the exception_mem. ORIGIN value of exception_mem must align with 4K
     address boundary. Keep the default value for the length */
 
  exception_mem       : ORIGIN = 0x9D000000, LENGTH = 0x1000
 
  /* Place kseg0_boot_mem adjacent to exception_mem. Keep the default value for the length */
  kseg0_boot_mem      : ORIGIN = (0x9D000000 + 0x1000), LENGTH = 0x970
 
  /* C Start-up code is mapped into kseg1_boot_mem. Place kseg1_boot_mem adjacent to
     kseg0_boot_mem. Keep the default value for the length */
  kseg1_boot_mem      : ORIGIN = (0x9D000000 + 0x1000 + 0x970), LENGTH = 0x490
 
  /*All C files (Text and Data) are mapped into kseg0_program_mem. Place kseg0_program_mem
    adjacent to kseg1_boot_mem. Change the length of kseg0_program_mem as required. In this
    example, 512 KB Flash size is shrunk as follows: */
 
  kseg0_program_mem (rx):ORIGIN = (0x9D000000 + 0x1000 + 0x970 + 0x490),

Bootloader Library Help Using the Library How the Library Works

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 8



    LENGTH = (0x80000 - (0x1000 + 0x970 + 0x490))
 
 
  debug_exec_mem             : ORIGIN = 0xBFC02000, LENGTH = 0xFF0
  config3                    : ORIGIN = 0xBFC02FF0, LENGTH = 0x4
  config2                    : ORIGIN = 0xBFC02FF4, LENGTH = 0x4
  config1                    : ORIGIN = 0xBFC02FF8, LENGTH = 0x4
  config0                    : ORIGIN = 0xBFC02FFC, LENGTH = 0x4
  kseg1_data_mem       (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x20000
  sfrs                       : ORIGIN = 0xBF800000, LENGTH = 0x100000
  configsfrs                 : ORIGIN = 0xBFC02FF0, LENGTH = 0x10
}

5. Set the value of _ebase_address to the ORIGIN value of exception_mem.

6. Change the values of memory addresses _RESET_ADDR, _BEV_EXCPT_ADDR and _DBG_EXCPT_ADDR, so that all these 
addresses fall inside kseg1_boot_mem.

7. Clean and build the application project to get a remapped application image.

 Note: The modified application linker script file is not suitable for building the application in debug or stand-alone (to use
without Bootloader) mode.

The next step following the application remap is informing the Bootloader about the new location and reset address of the user 
application in the program Flash.

The Bootloader code provides compile time options for this purpose. The macros, APP_FLASH_BASE_ADDRESS and 
APP_FLASH_END_ADDRESS, define the start and the end addresses of the program Flash reserved for the user application. The 
Bootloader performs an erase or program operation only if the target address of the Flash is within these addresses. Therefore, 
the user must set new start and end address values to these macros following the application remap. Set the addresses so that 
exception_mem, kseg0_boot_mem, kseg1_boot_mem, and kseg0_program_mem defined in the procdefs.ld file of the 
user application are within these addresses, as shown in Example 12.

Example 12: Lines to Modify in Bootloader Code 
/* APP_FLASH_BASE_ADDRESS and APP_FLASH_END_ADDRESS reserves program Flash for the application 
*/
/* Rule:
         1) The memory regions kseg0_program_mem, kseg0_boot_mem, exception_mem and
         kseg1_boot_mem of the application linker script must fall within APP_FLASH_BASE_ADDRESS
         and APP_FLASH_END_ADDRESS
 
         2) The base address and end address must align on 4K address boundary
*/
 
#define APP_FLASH_BASE_ADDRESS                                     0x9D000000
#define APP_FLASH_END_ADDRESS                                     0x9D07FFFF
 
/* Address of  the Flash from where the application starts executing */
/* Rule: Set APP_FLASH_BASE_ADDRESS to _RESET_ADDR value of application linker script */
 
#define USER_APP_RESET_ADDRESS     (0x9D000000 + 0x1000 + 0x970)

The macro, USER_APP_RESET_ADDRESS, specifies the reset address of the user application. The Bootloader branches to this 
address when it must run the user application. The value of this macro must be changed to _RESET_ADDR defined in the 
procdefs.ld file of the user application project. The Bootloader project must be recompiled and programmed into the PIC32 
device after modifying these macros.

Bootloader Configurations 

Provides information on the macros that are available to configure the Bootloader code during compilation.

Description

The Bootloader code provides a few macros for configuring the settings while compiling. Table 3 through Table 6 list these macros 
and their usage. Depending on user requirements, the values in these macros may need to be changed.

Table 3: General Macros 

Bootloader Library Help Using the Library How the Library Works

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 9



Macro Usage

APP_FLASH_BASE_ADDRESS Base  address  of  the  program  Flash  reserved  for  the  user  application.  The  address  value  must
point to the beginning of a 4K Flash page.

APP_FLASH_END_ADDRESS End  address  of  the  program  Flash  reserved  for  the  user  application.  The  address  value  must
point to the end of a 4K Flash page.

USER_APP_RESET_ADDRESS Address of user Reset vector. The Bootloader branches to this address when it must run the user
application.

MAJOR_VERSION Major version of the Bootloader firmware.

MINOR_VERSION Minor version of the Bootloader firmware.

Table 4: UART Bootloader Macro 

Macro Usage

DEFAULT_BAUDRATE Sets the UART baud rate.

Table 5: USB HID Bootloader Macros 

Macro Usage

USB_VENDOR_ID Sets the vendor ID.

USB_PRODUCT_ID Sets the product ID.

Table 6: Ethernet Bootloader Macros 

Macro Usage

MY_DEFAULT_MAC_BYTE1

MY_DEFAULT_MAC_BYTE2

MY_DEFAULT_MAC_BYTE3

MY_DEFAULT_MAC_BYTE4

Sets  the  MAC
address.

MY_DEFAULT_IP_ADDR_BYTE1

MY_DEFAULT_IP_ADDR_BYTE2

MY_DEFAULT_IP_ADDR_BYTE3

MY_DEFAULT_IP_ADDR_BYTE4

Sets  the  IP
Address.

Configuring the Library 
The configuration of the Bootloader Library is based on the file system_config.h.

This header file contains the configuration selection for the Bootloader Library. Based on the selections made, the Bootloader 
Library will or will not support selected features. These configuration settings will apply to all instances of the Bootloader Library.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a 
successful build. Refer to the Applications Help section for more details.

Building the Library 
This section lists the files that are available in the Bootloader Library.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for 
these files is <install-dir>/framework/bootloader.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library. 

Source File Name Description

/src/bootloader.h Includes all MPLAB Harmony-compatible function calls for the Bootloader Library.

Bootloader Library Help Building the Library

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 10



Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project
by the MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this 
library. 

Source File Name Description

<install-dir>/build/framework/bootloader/bootloader.X Include  this  project  to  bring  in  the  library  and  all
associated functions.  There are  two build  configuration
options available for this library:

• SW – Software-only configuration for all Microchip 
PIC32 microcontrollers

• HW – Hardware acceleration configuration for 
PIC32 devices that have a hardware encryption 
module

For both configurations, adjust the properties if 16-bit 
code is desired, and set the appropriate version of 
microcontroller.

<install-dir>framework/bootloader/src/bootloader.c This  file  contains  the  core  implementation  of  the
Bootloader Library.

<install-dir>framework/bootloader/src/datastream.c This file contains the data stream implementation of the
Bootloader  Library.  In  addition,  a
datastream_<type>.c  file  is  included  with  this  file.
For example, datastream_usart.c.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired 
implementation. 

Source File Name Description

N/A No optional files are available for this library.

Module Dependencies

The Bootloader Library does not depend on any other modules.

Bootloader Plug-in for MPLAB X IDE 
Describes the Bootloader plug-in.

Description

The Bootloader plug-in is a PC host application, which can be used to communicate with the Bootloader firmware of a PIC32 
device. 

 Note: This plug-in is required for UART, USB HID and Ethernet Bootloaders.

Installing the Bootloader Plug-in

1. Open MPLAB X IDE and select Tools > Plugins.

2.  Select the Available Plugins tab and select Bootloader from the list, and then click Install.

3. When the Plugin Installer window appears, click Next.

4. Accept the license terms, and then click Install.

5. If prompted to verify the certificate, click Continue.

6. When the Installation completed successfully message appears, click Finish to complete the installation.

Using the Bootloader Plug-in

This application is used to perform erase and programming operations.

Bootloader Library Help Bootloader Plug-in for MPLAB X IDE

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 11



1. In MPLAB X IDE, select Window > Bootloader. The Bootloader dialog will appear, as shown in the following figure.

2. Depending on the Bootloader configuration, enable either the USB, serial port (UART), or Ethernet (UDP) using the Protocol 
drop-down.

3. Choose the correct hex file in the File Path: by either typing it directly or by using the file navigation icon (  ). The 
reference application project for the Bootloader demonstrations are located in 
<install-dir>/apps/examples/peripherals/dma/dma_led_pattern.

4. Choose the desired COM Port/USB Device:

• UART Bootloader - The default baud rate is 115200. The Data bits should be set to 8, the Stop bits should be set to 1, and 
Parity should be disabled.

• USB HID Bootloader - The default values of Vendor ID number (VID) and Product ID number (PID) are 0x4D8 and 0x03C, 
respectively. If the USB is connected and running, the device in the COM Port/USB Device drop-down list will appear as 
USB HID Bootloader; otherwise, this field is empty.

• Ethernet Bootloader - The default IP address is 192.168.1.11. Set the IP address and subnet mask of the PC to 
192.168.1.12 and 255.255.255.0, respectively.

5. Once properly configured, click the Bootloader icon (  ), which is located in the MPLAB X IDE toolbar. The application will 
then erase the device, program the Flash, and reset the device. Once completed, the device will be running the programmed 
application.

Library Interface 
a) Functions

Name Description

Bootloader_Initialize Initializes the Bootloader Library.

Bootloader_Tasks Maintains the Bootloader module state machine. It manages the Bootloader 
module object list items and responds to Bootloader module primitive events.

b) Data Types and Constants

Name Description

BOOTLOADER_CLIENT_STATUS Enumerated data type that identifies the Bootloader module client status.

BOOTLOADER_INIT A structure used to initialize the bootloader defining the different bootloader.

BOOTLOADER_TYPE A structure used to initialize the bootloader defining the different bootloader.

MAJOR_VERSION Bootloader Major Version Shown From a Read Version on PC

MINOR_VERSION Bootloader Minor Version Shown From a Read Version on PC

Description

This section describes the Application Programming Interface (API) functions of the Bootloader Library.

Refer to each section for a detailed description.

a) Functions 

Bootloader Library Help Library Interface a) Functions

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 12



Bootloader_Initialize Function 

Initializes the Bootloader Library.

File

bootloader.h

C
void Bootloader_Initialize(const BOOTLOADER_INIT * drvBootloaderInit);

Returns

If successful, returns a valid handle to a device layer object. Otherwise, it returns SYS_MODULE_OBJ_INVALID.

Description

This function is used to initialize the Bootloader Library.

Remarks

This routine must be called before other Bootloader Library functions.

Preconditions

None.

Function

void Bootloader_Initialize (const SYS_MODULE_INDEX   moduleIndex,

const SYS_MODULE_INIT    * const moduleInit);

Bootloader_Tasks Function 

Maintains the Bootloader module state machine. It manages the Bootloader module object list items and responds to Bootloader 
module primitive events.

File

bootloader.h

C
void Bootloader_Tasks();

Returns

None.

Description

This function maintains the Bootloader module state machine and manages the Bootloader Module object list items and responds 
to Bootloader Module events. This function should be called from the SYS_Tasks function.

Remarks

This function is normally not called directly by an application.

Preconditions

None.

Example
while (true)
{
    Bootloader_Tasks ();
 

Bootloader Library Help Library Interface a) Functions

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 13



    // Do other tasks
}

Parameters

Parameters Description

index Object index for the specified module instance.

Function

void Bootloader_Tasks (SYS_MODULE_INDEX index);

b) Data Types and Constants 

BOOTLOADER_CLIENT_STATUS Enumeration 

Enumerated data type that identifies the Bootloader module client status.

File

bootloader.h

C
typedef enum {
  BOOTLOADER_CLIENT_STATUS_CLOSED,
  BOOTLOADER_CLIENT_STATUS_READY,
  BOOTLOADER_CLIENT_STATUS_WRITEFAILURE,
  BOOTLOADER_CLIENT_STATUS_WRITESUCCESS
} BOOTLOADER_CLIENT_STATUS;

Members

Members Description

BOOTLOADER_CLIENT_STATUS_CLOSED Client is closed or the specified handle is invalid

BOOTLOADER_CLIENT_STATUS_READY Client is ready

Description

Bootloader Client Status

This enumeration defines the possible status of the Bootloader module client. It is returned by the () function.

Remarks

None.

BOOTLOADER_INIT Structure 

A structure used to initialize the bootloader defining the different bootloader.

File

bootloader.h

C
typedef struct {
  BOOTLOADER_TYPE drvType;
  BOOTLOADER_STATES (* drvTrigger)(void);
} BOOTLOADER_INIT;

Description

Bootloader Initialization Type

Bootloader Library Help Library Interface b) Data Types and Constants

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 14



This structure holds the bootloader types.

Remarks

None.

BOOTLOADER_TYPE Enumeration 

A structure used to initialize the bootloader defining the different bootloader.

File

bootloader.h

C
typedef enum {
  TYPE_I2C,
  TYPE_USART,
  TYPE_USB_HOST,
  TYPE_USB_DEVICE,
  TYPE_ETHERNET_UDP_PULL
} BOOTLOADER_TYPE;

Description

Bootloader Type

This structure holds the bootloader types.

Remarks

None.

MAJOR_VERSION Macro 

File

bootloader.h

C
#define MAJOR_VERSION 4    /* Bootloader Major Version Shown From a Read Version on PC */

Description

Bootloader Major Version Shown From a Read Version on PC

MINOR_VERSION Macro 

File

bootloader.h

C
#define MINOR_VERSION 1    /* Bootloader Minor Version Shown From a Read Version on PC */

Description

Bootloader Minor Version Shown From a Read Version on PC

Bootloader Library Help Files

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 15



Files 
Files

Name Description

bootloader.h The header file joins all header files used in the Bootloader Library and contains 
compile options and defaults.

Description

This section lists the source and header files used by the Bootloader Library.

bootloader.h 
The header file joins all header files used in the Bootloader Library and contains compile options and defaults.

Enumerations

Name Description

BOOTLOADER_CLIENT_STATUS Enumerated data type that identifies the Bootloader module client status.

BOOTLOADER_TYPE A structure used to initialize the bootloader defining the different bootloader.

Functions

Name Description

Bootloader_Initialize Initializes the Bootloader Library.

Bootloader_Tasks Maintains the Bootloader module state machine. It manages the Bootloader 
module object list items and responds to Bootloader module primitive events.

Macros

Name Description

MAJOR_VERSION Bootloader Major Version Shown From a Read Version on PC

MINOR_VERSION Bootloader Minor Version Shown From a Read Version on PC

Structures

Name Description

BOOTLOADER_INIT A structure used to initialize the bootloader defining the different bootloader.

Description

Module for Microchip Bootloader Library

This header file includes all the header files required to use the Microchip Bootloader Library. Library features and options defined 
in the Bootloader Library configurations will be included in each build.

File Name

bootloader.h

Company

Microchip Technology Inc.

Bootloader Library Help Files bootloader.h

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 16



Index

A

Abstraction Model 2

Bootloader Library 2

B

Basic Flow of the Bootloader 3

Bootloader Communication Protocol (UART, USB HID, and Ethernet) 5

Bootloader Configurations 9

Bootloader Library Help 2

Bootloader Placement in Memory 4

Bootloader Plug-in for MPLAB X IDE 11

bootloader.h 16

BOOTLOADER_CLIENT_STATUS enumeration 14

BOOTLOADER_INIT structure 14

Bootloader_Initialize function 13

Bootloader_Tasks function 13

BOOTLOADER_TYPE enumeration 15

Building the Library 10

Bootloader Library 10

C

Configuring the Library 10

Bootloader Library 10

Considerations While Moving the Application Image 7

D

Demonstration Application 5

F

Files 16

Bootloader Library 16

H

Handling Device Configuration Bits 4

How the Library Works 3

I

Introduction 2

Bootloader Library 2

L

Library Interface 12

Bootloader Library 12

Library Overview 3

Bootloader Library 3

M

MAJOR_VERSION macro 15

MINOR_VERSION macro 15

U

Using the Bootloader Application (UART, USB HID, and Ethernet 
Bootloaders) 5

Using the Library 2

Bootloader Library 2

Index

© 2013-2016 Microchip Technology Inc. MPLAB Harmony v1.07.01 17


	Bootloader Library Help
	Bootloader Library Help
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Basic Flow of the Bootloader
	Bootloader Placement in Memory
	Handling Device Configuration Bits
	Demonstration Application
	Using the Bootloader Application (UART, USB HID, and Ethernet Bootloaders)
	Bootloader Communication Protocol (UART, USB HID, and Ethernet)
	Considerations While Moving the Application Image
	Bootloader Configurations


	Configuring the Library
	Building the Library
	Bootloader Plug-in for MPLAB X IDE
	Library Interface
	a) Functions
	Bootloader_Initialize Function
	Bootloader_Tasks Function

	b) Data Types and Constants
	BOOTLOADER_CLIENT_STATUS Enumeration
	BOOTLOADER_INIT Structure
	BOOTLOADER_TYPE Enumeration
	MAJOR_VERSION Macro
	MINOR_VERSION Macro


	Files
	bootloader.h


	Index


