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Abstract.— The recent development of Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) techniques
has facilitated the exploration of parameter-rich evolutionary models. At the same time, stochastic models have become
more realistic (and complex) and have been extended to new types of data, such as morphology. Based on this foundation, we
developed a Bayesian MCMC approach to the analysis of combined data sets and explored its utility in inferring relationships
among gall wasps based on data from morphology and four genes (nuclear and mitochondrial, ribosomal and protein
coding). Examined models range in complexity from those recognizing only a morphological and a molecular partition
to those having complex substitution models with independent parameters for each gene. Bayesian MCMC analysis deals
efficiently with complex models: convergence occurs faster and more predictably for complex models, mixing is adequate
for all parameters even under very complex models, and the parameter update cycle is virtually unaffected by model
partitioning across sites. Morphology contributed only 5% of the characters in the data set but nevertheless influenced
the combined-data tree, supporting the utility of morphological data in multigene analyses. We used Bayesian criteria
(Bayes factors) to show that process heterogeneity across data partitions is a significant model component, although not as
important as among-site rate variation. More complex evolutionary models are associated with more topological uncertainty
and less conflict between morphology and molecules. Bayes factors sometimes favor simpler models over considerably more
parameter-rich models, but the best model overall is also the most complex and Bayes factors do not support exclusion of
apparently weak parameters from this model. Thus, Bayes factors appear to be useful for selecting among complex models,
but it is still unclear whether their use strikes a reasonable balance between model complexity and error in parameter
estimates. [Bayes factors; Bayesian analysis; combined data; Cynipidae; gall wasps; MCMC; model heterogeneity; model
selection.]

Increasingly, phylogenetic problems are being ad-
dressed using data from several different sources:
morphology and molecules, DNA and protein, mito-
chondrial and nuclear genes, coding and noncoding
sequences. Previously, it has been common to address
such mixed data sets using the parsimony method.
Where parametric methods have been applied, they have
typically excluded some data (such as morphology) be-
cause of a lack of appropriate stochastic models, and they
have often ignored obvious heterogeneity across data
partitions because of the computational complexity of
the maximum likelihood (ML) approach (for exceptions,
see Yang, 1996b; DeBry, 1999; Pupko et al., 2002; Thorne
and Kishino, 2002).

The recent development of Bayesian inference of phy-
logeny using Markov chain Monte Carlo (MCMC) esti-
mation of posterior probability distributions has made
it easier to address complex, parameter-rich stochas-
tic models within a statistical framework, opening up
the possibility for combined data analysis recognizing
among-partition heterogeneity in data source and in
properties of the evolutionary process. Recent stochas-
tic models developed for new types of data, such as
morphology (Lewis, 2001a; Ronquist and Huelsenbeck,
in prep.), now make it possible to include virtually
any kind of character used today to infer phylogeny
in such analyses, and the computational efficiency of
the Bayesian MCMC approach allows each data par-
tition to be treated using more realistic evolution-
ary models. However, combined statistical analysis us-
ing Bayesian MCMC techniques introduces a whole
range of questions that have not been addressed pre-

viously, while providing a new perspective on oth-
ers. Here, we describe a Bayesian MCMC approach
to combined data analysis, using empirical results
from one combined data set to address some of these
questions.

Bayesian MCMC Approach to Combined Data

Bayesian phylogenetic inference based on heteroge-
neous data is a straightforward extension of the methods
already described for homogeneous data (see recent re-
views by Huelsenbeck et al., 2001; Lewis, 2001b; Holder
and Lewis, 2003). Assume that the data set X consists
of two distinct partitions Xa and Xb and allow the sub-
stitution model parameters, θa and θb , respectively, to be
completely different for the two partitions. In the models
we explored, we further assumed that the two data sub-
sets evolve on the same topology, τ , with the same set of
branch lengths, ν, but that the overall rate differs across
partitions according to a rate multiplier, denoted ma and
mb for the two partitions. In other words, effective branch
lengths are potentially different but proportional across
partitions, as in the ML model proposed by Yang (1996;
note that Yang used c instead of m for the multiplier).
Using Bayes’s rule (see for instance Huelsenbeck et al.,
2001), the joint posterior probability distribution for this
model becomes

f (τ, ν, θa , θb , ma , mb | X)

= f (τ, ν, θa , θb , ma , mb) f (X | τ, ν, θa , θb , ma , mb)
f (X)

,
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where f (τ, ν, θa , θb , ma , mb) is the prior probability of the
model parameters, f (X | τ, ν, θa , θb , ma , mb) is the proba-
bility of the data given model parameters (the likelihood
function), and f(X) is the model likelihood (also called
the integrated or predictive likelihood), which is a mul-
tidimensional sum and integral of the probability of the
data over all parameter values.

The posterior probability distribution, which is the
central quantity in Bayesian inference, is typically es-
timated using MCMC techniques instead of being de-
rived analytically. The procedure is started with an arbi-
trary set of parameter values. In each cycle (generation)
of the Markov chain, one parameter or a block of param-
eters is updated using a stochastic proposal mechanism.
The most common mechanism used in Bayesian phy-
logenetic inference, Metropolis sampling, involves the
proposal of a new state based on an arbitrary proposal
distribution, q , and then acceptance of this state with a
probability determined by the product of three ratios: the
prior ratio, the likelihood ratio, and the proposal ratio.
Assume, for instance, that we wish to update the sub-
stitution model parameters for partition a from θa to θ∗

a .
The acceptance probability r would then become

r = min
[

1,
f (θ∗

a )
f (θa )

× f (Xa | τ, v, ma , θ∗
a )

f (Xa | τ, v, ma , θa )
× q (θa | θ∗

a )
q (θ∗

a | θa )

]
.

When updating a homogeneous model or a param-
eter shared across all partitions, the calculation of the
likelihood ratio (the second ratio in the product) always
involves the entire data set. However, updating a parti-
tioned parameter only requires consideration of the af-
fected data partition, Xa in this case. The calculation of
the likelihood ratio is by far the most computationally
complex operation in MCMC analysis, and the speed of
the calculation is roughly proportional to the size of the
data set. Thus, the increase in the number of parameters
in a partitioned model over that in a similar homoge-
neous model is largely offset by the speed gained in each
cycle of the chain. The net result is that the time required
for updating all model parameters a given number of
times will remain roughly constant regardless of model
partitioning. However, more complex models will of
course have more dimensions in their parameter spaces,
which might cause difficulties for the MCMC sampling
procedure.

Convergence and Mixing

Theory predicts that a properly constructed Markov
chain, if run long enough, will produce a valid sam-
ple from the posterior probability distribution (Tierney,
1994). However, the greatest practical problem in MCMC
analysis is to determine when the chain is sufficiently
close to its target distribution (the posterior distribution
of interest) for the samples to provide a good approx-
imation of this distribution. One of the most powerful
approaches used to address this question is compari-
son of the results from independent runs started from
different points in parameter space. In the phylogenetic

context, we expect integration over topology to be partic-
ularly difficult; therefore, starting the independent runs
from different, randomly chosen topologies should pro-
vide a good test of whether the chains are providing
valid samples from the posterior probability distribution
(Huelsenbeck et al., 2002).

It is useful to distinguish two potential sources of prob-
lems with MCMC estimation of a target distribution:
convergence and mixing. The difference between them
is best explained if we consider a posterior distribution
with two separate regions, each containing roughly half
of the total probability. Typically, a MCMC run starts
sampling from a region with extremely low posterior
probability because starting values are set arbitrarily or
chosen randomly. When the chain has settled into the
high-density regions of the distribution, it can be said to
have converged, and the overall likelihood will tend to
vary less than during the initial burn-in period. How-
ever, we still do not know how long it will take the
chain to adequately sample both regions of high den-
sity in the posterior distribution; this is determined by
the mixing behavior of the chain. The slower the mix-
ing, the longer it will take the chain to move from one to
the other of the high-density regions. Whereas the gen-
eration plot of the overall likelihood gives a preliminary
idea of whether convergence might have occurred, as-
sessment of the mixing behavior requires examination
of the plots of all model parameters. This is particularly
true when Metropolis coupling is used, because this tech-
nique allows the chain to jump between different regions
in parameter space with little effect on overall likelihood
(Huelsenbeck et al., 2001).

Bayesian Model Selection

Analyzing combined data using Bayesian MCMC
methods allows us to specify partition-specific substi-
tution models. As more partitions are being considered,
the complexity of the joint model increases as does the
complexity of the issue of model selection. One strategy
for model selection for Bayesian MCMC analysis is to fit
a substitution model to each partition prior to the anal-
ysis using, for example, a hierarchical likelihood-ratio
test (hLRT; Huelsenbeck and Crandall, 1997; Posada and
Crandall, 2001), the Akaike information criterion (AIC;
Akaike, 1973), or the Bayesian information criterion (BIC;
Schwartz, 1978), all of which are based on ML estimates.
The Markov chain is then run using a composite ‘super-
model’ that consists of several submodels.

It is not self-evident, however, that such an approach
will necessarily lead to an optimal composite model.
Most importantly, the selection of an optimal model for
one partition should not ignore information from other
partitions. For example, the methods mentioned above
depend on point estimates of the topology and other pa-
rameters, and it is well known that different topologies
might rank models differently (Sanderson and Kim, 2000;
Posada and Crandall, 2001). Thus, selecting an optimal
model for each partition separately, on the best tree im-
plied by the data from that partition, might result in a
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combination of models that could not be optimal on the
same topology. Furthermore, considering each partition
separately may result in overparameterization, because
such an approach makes it difficult to discover when it
is appropriate for two partitions to share parameters.

Unfortunately, computational problems make it dif-
ficult to apply directly the methods described above
to parameter-rich partitioned models. Furthermore,
Bayesian statisticians often object in general to model
testing based on point estimates, because such methods
are not taking the uncertainty of the topology and other
parameters into account. The argument is that a model
with substantial posterior probability for a large range
of parameter values could have a higher marginal (total)
likelihood than a model with a narrow peak in its likeli-
hood, even though the latter model may have the high-
est ML value. In such situations, Bayesian statisticians
have argued, it would be unwise to compare models only
based on the merits of a single point; instead, we should
consider the entire parameter space and prefer the model
with the largest total likelihood (Bollback, 2002; Holder
and Lewis, 2003). An additional problem with the ML ap-
proach is that it favors the more parameter-rich model
in comparisons of nested models unless the parameter-
rich models are penalized as in AIC or BIC. That is, the
favored model might contain parameters that have little
or no explanatory value (Burnham and Anderson, 2002).
The Bayesian approach does not always favor the more
parameter-rich of two nested models; on the contrary,
there is some concern that Bayesian methods may, un-
der some circumstances, put too much emphasis on the
simpler model. This phenomenon is known as Lindley’s
paradox, and it can occur with large data sets when the
estimate from the complex model is close to the simple
model (Bartlett, 1957; Lindley, 1957).

Because of the problems with the likelihood approach,
we explored Bayesian model comparison based on Bayes
factors. Assume that we wish to compare how well two
models, M0 and M1, describe the processes generating a
data set X. The Bayes factor in favor of model 1 over
model 0, B10, is calculated as the ratio of the model
likelihoods f (X | Mi ):

B10 = f (X | M1)
f (X | M0)

.

The model likelihoods, f (X | Mi ), are the same as the
f (X) denominator of Bayes’s rule; the conditioning on
a model is implicit in the latter.

The Bayes factor can be interpreted as the posterior
odds of model 1 to model 0 in a Bayesian inference prob-
lem where we start with equal probability of the two
models being true (Kass and Raftery, 1995; Wasserman,
2000). Alternatively, the Bayes factor can be viewed sim-
ply as a comparison of the predictive likelihoods of the
models (Gelfand and Dey, 1994; Kass and Raftery, 1995;
Wasserman, 2000) or a comparison of the ability of the
models to update the priors (Lavine and Schervish, 1999;
Wasserman, 2000). Both the latter comparisons would be

TABLE 1. Interpretation of the Bayes factor (B10) (taken from Kass
and Raftery, 1995).

2 loge (B10) B10 Evidence against M0

0 to 2 1 to 3 not worth more than
a bare mention

2 to 6 3 to 20 positive
6 to 10 20 to 150 strong
>10 >150 very strong

valid even, although strictly speaking none of the mod-
els is likely to be an exact (true) description of the pro-
cess under study. The Bayes factor comparison can be
applied to any set of models, regardless of whether they
are nested or not (as can AIC and BIC but not hLRT),
and it is based on integration over the uncertainty in all
parameter values rather than on ML point estimates (as
opposed to AIC, BIC, and hLRT).

The Bayes factor is not used in a normal statistical test
of whether a hypothesis should be rejected or accepted
given some subjective cutoff value. Instead, the Bayes
factor evaluates the relative merits of competing mod-
els, and the interpretation is left to the scientist. Jeffreys
(1961) originally provided some guidelines for this in-
terpretation, which have been modified by other work-
ers. We use a version originally presented by Kass and
Raftery (1995) (Table 1).

Questions Regarding Combined Phylogenetic Analysis

We applied combined Bayesian MCMC analysis to an
empirical data set consisting of morphological and nu-
cleotide data for 32 exemplar species of gall wasps (Hy-
menoptera: Cynipidae) and outgroups. The exemplars
span the entire diversity of the family and include phy-
tophagous guests in galls (inquilines) and gall inducers
on a variety of both herbaceous and woody host plants
(Table 2; Ronquist, 1999).

The morphological data consisted of 166 characters,
which have previously been shown to partly resolve
the phylogeny with strong support values using parsi-
mony methods (Liljeblad and Ronquist, 1998). The nu-
cleotide data are almost entirely original to this study
and consisted of a total of 3,080 aligned base pairs (bp)
from four genes: two nuclear protein-coding genes (elon-
gation factor 1α F1 copy [EF1α] and long-wavelength
opsin [LWRh]), one mitochondrial protein-coding gene
(cytochrome oxidase c subunit I [COI]), and nuclear 28S
ribosomal DNA (rDNA). We analyzed the data using a
range of models of varying complexity (dimensionality)
and explored the following questions.

What is the relationship between model complexity and
computational complexity?—It is difficult to predict how
MCMC estimation of the posterior probability distribu-
tion is affected by an increase in model complexity. The
chain can be updated faster in those generations where
model parameters affecting only some of the partitions
are changed; however, more parameters also means that
each parameter will be visited more rarely. More param-
eters will also affect the complexity and the shape of the
posterior distribution, which might slow convergence



50 SYSTEMATIC BIOLOGY VOL. 53

TABLE 2. Taxa of gall wasps (Cynipidae) and outgroups (Figitidae, Liopteridae, Ibaliidae) used in the analysis. Brief biological data are given
for each exemplar genus. GenBank accession numbers are given for all sequences; a dash indicates missing data.

GenBank nos.

Taxon Morphologya Host plantb Biologyc COI 28S EF1α LWRh

Cynipidae
Synergini

Synergus crassicornis Quercus (Fg) inquiline AY368909 AY368936 AY368962 AY371051
Ceroptres cerri C. clavicornis Quercus (Fg) inquiline AY368910 AY368935 — AY371052
Periclistus brandtii Rosa (Ro) inquiline AF395181 AF395152 AF395173 AF395189
Synophromorpha sylvestris S. rubi Rubus (Ro) inquiline AY368911 AY368937 AY368961 —

“Aylacini”
Xestophanes potentillae Potentilla (Ro) galler AY368912 AY368938 AY368963 —
Diastrophus turgidus Rosaceae galler AY368913 AY368939 AY368964 —
Gonaspis potentillae Potentilla (Ro) galler AY368914 AY368940 AY368965 —
Liposthenes glechomae Glechoma (La) galler AY368915 AY368941 AY368966 AY371053
Liposthenes kerneri Nepeta (La) galler AY368916 AY368942 AY368967 AY371054
Antistrophus silphii A. pisum Asteraceae galler AY368917 AY368943 AY368968 AY371055
Rhodus oriundus Salvia (La) galler AY368918 AY368944 AY368969 AY371056
Hedickiana levantina Salvia (La) galler AY368919 AY368945 AY368970 AY371057
Neaylax verbenaca N. salviae Salvia (La) galler AY368920 AY368946 AY368971 AY371058
Isocolus rogenhoferi Asteraceae galler AY368921 AY368947 AY368972 AY371059
Aulacidea tragopogonis Asteraceae galler AY368922 AY368948 AY368973 AY371060
Panteliella bicolor P. fedtschenkoi Phlomis (La) galler AF395180 AF395153 AF395172 AF395188
Barbotinia oraniensis Papaver (Pa) galler AF395179 AF395150 AF395171 AF395187
Aylax papaveris Papaver (Pa) galler AY368923 AY368949 AY368974 AY371061
Iraella luteipes Papaver (Pa) galler AY368924 AY368950 AY368975 —
Timaspis phoenixopodos Asteraceae galler AY368925 AY368951 AY368976 AY371062
Phanacis hypochoeridis Asteraceae galler AY368926 AY368952 AY368977 —
Phanacis centaureae Asteraceae galler AY368927 AY368953 AY368978 —

Eschatocerini
Eschatocerus acaciae Acacia (Fb) galler AY368928 AY368954 AY368979 AY371063

Diplolepidini
Diplolepis rosae Rosa (Ro) galler AF395174 AF395157 AF395166 AF395182

Pediaspidini
Pediaspis aceris Acer (Sa) galler AY368929 AY368955 AY368980 AY371064

Cynipini
Plagiotrochus quercusilicisd Quercus (Fg) galler AF395178 AF395154 AF395162 AF395186
Andricus kollari A. quercusradicis Quercus (Fg) galler AF395176 AF395156 AF395168 AF395184
Neuroterus numismalis Quercus (Fg) galler AY368930 AY368956 AY368981 —
Biorhiza pallida Quercus (Fg) galler AY368931 AY368957 AY368982 AY371065

Figitidae
Parnips nigripes — parasitoid AY368932 AY368958 AY368983 AY371066

Liopteridae
Paramblynotus virginianus P. zonatus — parasitoid AY368933 AY368959 AY368984 —

Ibaliidae
Ibalia rufipes — parasitoid AY368934 AY368960 AY368985 —

aSpecies coded for morphology if different from the species sequenced.
bGenus or family of host plant attacked by the exemplar genus if phytophagous. A few rarely used host plants have been omitted; see Ronquist and Liljeblad

(2001) for more information. If all members of the genus attack the same host-plant genus, then the family to which that genus belongs is indicated in brackets: Fb =
Fabaceae; Fg = Fagaceae; La = Lamiaceae; Pa = Papaveraceae; Ro = Rosaceae; Sa = Sapindaceae.

cCynipidae are either inquilines (phytophagous guests) in galls or gall inducers. The outgroups are endoparasitoids attacking various insect larvae.
dSpecies name recently designated a senior synonym of P. fusifex.

and mixing. However, more realistic models may lead to
posterior distributions that are easier to traverse using
MCMC, despite the increase in the number of parame-
ters. We examined the computational speed, time to con-
vergence, and mixing over the entire range of models to
examine these questions empirically.

Do morphological data influence multigene analyses?—
Morphological data are potentially important in phy-
logenetic inference for many reasons. For instance,
morphological characters are crucial in placing fossils in
phylogenies and thus in dating branching events. How-
ever, the ability to combine morphological and molecu-
lar data in a single analysis is particularly important if it

can be shown that morphology has significant influence
on the phylogenetic estimate even when combined with
multigene data sets. This question has remained largely
unexplored with parametric methods, because only re-
cently were stochastic models seriously considered for
morphological data (Lewis, 2001a). We used an extended
version of Lewis’s models (Ronquist and Huelsenbeck, in
prep.) in evaluating whether the 166 morphological char-
acters in our data set significantly affected the phyloge-
netic estimate when combined with the 3,080 nucleotide
characters from the four different genes.

Are composite models better?—When it becomes pos-
sible to analyze partitioned models easily, an obvious
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question is how important it is to recognize across-
partition heterogeneity in evolutionary processes. To ex-
amine this question, we used Bayes factor comparisons to
look at the increase in model likelihood associated with
the introduction of different model components account-
ing for within-partition or across-partition heterogeneity
in the molecular portion of the data set.

Are complex models associated with increased variance of
topology estimates?—Complex models are generally asso-
ciated with more error variance in parameter estimates.
If the error variance is excessive, it becomes a problem
known as overparameterization or overfitting (Burnham
and Anderson, 2002). However, overly simple models
can also be problematic. In particular, oversimplified
evolutionary models might lead to dramatically low-
ered topological variance and exaggerated clade proba-
bility values in Bayesian phylogenetic inference (Suzuki
et al., 2002). To examine the relationship between model
complexity and the precision of parameter estimates,
we compared topology and tree-length estimates across
models. We also looked at the effect of model complexity
on the conflict between the morphological and molecular
partitions.

Is the Bayesian MCMC approach sensitive to the inclu-
sion of superfluous parameters in a complex model?—It may
be difficult to design complex models that adequately
explain a process under study without including one
or a few parameters that are superfluous in the sense
that (1) the data are not powerful enough to signifi-
cantly alter their prior probability distribution or (2) the
posterior probability distribution coincides with a less
parameter-rich submodel. Such “superfluous” parame-
ters might cause problems with MCMC estimation of the
posterior distribution. We searched the posterior distri-
butions of more complex models for such parameters
to see whether they were present and, if so, whether
there was any apparent effect on convergence or on the
posterior distributions of other model parameters. If the
Bayesian MCMC approach were sensitive to superfluous
parameters, it might be difficult to design appropriate
composite models that would result in successful com-
bined analysis.

Do Bayes factors strike a reasonable balance between model
complexity and error variance?—The ability to allow het-
erogeneity across data partitions in model parameters
opens up a Pandora’s Box of model choice problems,
which are difficult to address without good model se-
lection criteria and procedures. Standard likelihood ra-
tio tests have a tendency to prefer complex models
(Gelfand and Day, 1994; Burnham and Anderson, 2002)
and various procedures have been developed to punish
parameter-rich models (Akaike, 1973; Schwartz, 1978). In
theory, the Bayes factor comparison does not suffer from
this problem; a simple model can be favored over a more
parameter-rich model even if the models are nested. We
looked for instances of simple models winning over more
complex ones and cases where the Bayes factor would fa-
vor model reduction by supporting the exclusion of weak
parameters.

MATERIALS AND METHODS

Data

We assembled DNA and morphological data for 29 gall
wasp exemplars and three outgroup exemplars, the lat-
ter representing the families Figitidae, Liopteridae, and
Ibaliidae (Table 2). Previous phylogenetic analyses in-
dicate that Figitidae is the sister group to Cynipidae
and that the Liopteridae and Ibaliidae are successively
more distant outgroups (Ronquist, 1999). The gall wasp
sample included representatives of all described tribes
of the only extant subfamily. All major wasp genera of
phytophagous guests in cynipid galls, also known as
inquilines, were represented except for the genus Sa-
phonecrus, which is considered close to if not embedded
within Synergus (Ronquist, 1994, 1999; Nieves-Aldrey,
2001; Ronquist and Liljeblad, 2001). A broad selection
of gall inducers attacking herbaceous and woody host
plants was also included. At least half the described
genera were included for all tribes except the Cynipini,
or the oak gallers. This tribe, comprising more than 40
described genera, was represented by only four genera
but is widely thought to be monophyletic (Kinsey, 1920;
Askew, 1984; Ronquist, 1994, 1999; Liljeblad and Ron-
quist, 1998; Nieves-Aldrey, 2001; Ronquist and Liljeblad,
2001; Stone et al., 2002).

The morphological data were taken from Liljeblad
and Ronquist (1998) and consist of 166 parsimony-
informative discrete characters: 164 external morpholog-
ical characters and two ecological characters (alteration
of sexual/asexual generations, and host-plant choice)
(Liljeblad and Ronquist, 1998: appendix 1). Some mul-
tistate characters were treated as ordered and others
as unordered, as specified by Liljeblad and Ronquist
(1998).

As far as possible, DNA data were collected from the
same species for which we had morphological data. In
a few cases, an exact match could not be obtained, but
DNA sequences were obtained, from a close relative and
these taxa were combined into a single terminal in the fi-
nal analyses (Table 2). We sequenced parts of four genes:
COI (1,078 bp), the nuclear protein-coding genes LWRh
(481 bp) and EF1α, (367 bp), and the nuclear 28S rDNA
(1,154 bp) (GenBank accession numbers in Table 2). De-
tails of the DNA amplification protocols and primers
were given by Rokas et al. (2002). The protein-coding
genes (COI, LWRh, and EF1α) were easily aligned by
eye. The ribosomal sequences (28S) differed in length,
and some of the more variable regions were difficult
to align manually. We used ClustalW 1.81 (Thompson
et al., 1994) for this alignment. We applied a range of
costs for the gap opening and gap extension penal-
ties, and the individual alignments were subjected to
parsimony bootstrap (Felsenstein, 1985) analyses using
PAUP∗ (Swofford, 1998). Supported groups were largely
congruent among the resulting trees. The alignment re-
sulting from the use of the default settings in ClustalW is
available from TreeBase (http://www.treebase.org, ac-
cession S970).
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Parsimony Analyses of Morphological Data

For comparison with the Bayesian analysis, the mor-
phological data set was subjected to parsimony analy-
sis with equal character weights (standard parsimony)
and with characters weighted according to degree of
homoplasy using Goloboff’s (1993) concave weighting
function with the constant of concavity (k) set to 2 (im-
plied weights parsimony). These analyses were com-
pleted using PAUP∗ (Swofford, 1998). A bootstrap major-
ity rule consensus tree was calculated using 1,000 pseu-
doreplicates, each with five random addition sequences
followed by tree bisection–reconnection (TBR) branch
swapping and saving only one tree per pseudoreplicate
(multrees = no).

Models of Character Evolution

For single DNA data partitions, we used standard sub-
stitution models: Jukes–Cantor (JC; Jukes and Cantor,
1969), Hasegawa–Kishino–Yano (HKY; Hasegawa et al.,
1985), and general time reversible (GTR; Lanave et al.,
1984; Tavaré, 1986; Rodrı́guez et al., 1990). Rates were
either assumed to be equal or to vary across sites ac-
cording to a gamma distribution (	; Yang, 1994) with
or without a proportion of invariable sites (I; Gu et al.,
1995). For morphological data, we used the Mk (Markov
k) model of Lewis (2001a) extended to deal with ordered
multistate characters and a new type of coding bias (only
parsimony-informative characters scored) (Ronquist and
Huelsenbeck, in prep.). The Mk model assumes equal
state frequencies; it is possible to extend it to deal with
unequal state frequencies, but we did not do so. The
Mk model could be combined with equal or gamma-
distributed rates across “sites” (i.e., characters) but not
with a proportion of invariable “sites” because constant
morphological characters were absent in the data ma-
trix, making it impossible to estimate the proportion of
invariable sites/characters.

We combined these elementary models in different
ways to explore a range of composite models of dif-
ferent complexity (Table 3). First, we analyzed morpho-
logical and nucleotide data separately using 1-Mk	 and
1-GTRI	 models (where 1 denotes a single data parti-
tion). Then we combined morphology and nucleotide
data in models with either a single morphological and
a single nucleotide partition (2-Mk-JC, 2-Mk-GTR, 2-
Mk	-HKYI	, and 2-Mk	-GTRI	 models) or a single
morphological and four nucleotide partitions, each of
the latter corresponding to a different gene (5-Mk-JC,
5-Mk-GTR, 5-Mk	-HKYI	, and 5-Mk	-GTRI	 models).
We allowed different data partition to evolve at a dif-
ferent rate, but branch lengths were assumed to be pro-
portional across partitions (Yang, 1996b; Ronquist and
Huelsenbeck, 2003). In the five-partition models, we also
allowed the nucleotide models to be unique for each par-
tition, i.e., we allowed stationary state frequencies and
all other substitution model parameters to be indepen-
dent across partitions. The number of free parameters in
the examined evolutionary models ranged from 1 to 45
(Table 3).

TABLE 3. Summary of the models under which data were analyzed.
The models contained one (either morphology or DNA), two (one mor-
phology and one DNA), or five (one morphology and four DNA) data
partitions. All parameters were allowed to be partition specific. The
character-substitution models are given for the morphological and nu-
cleotide (DNA) data. The number of free parameters is given excluding
branch-length and topology parameters. Mk = Markov k model; JC =
Jukes–Cantor model; HKY = Hasegawa–Kishino–Yano model; GTR =
general time reversible model; I = proportion of invariant sites;
	 = gamma rate variation; m = rate multiplier.

Morphology No. free
Model Partitions model DNA model parameters

1-Mk	 1 Mk+	 1
1-GTRI	 1 GTR+I+	 10
2-Mk-JC 2 Mk, m JC, m 1
2-Mk-GTR 2 Mk, m GTR, m 9
2-Mk	-HKYI	 2 Mk+	, m HKY+I+	, m 8
2-Mk	-GTRI	 2 Mk+	, m GTR+I+	, m 12
5-Mk-JC 5 Mk, m JC, m 4
5-Mk-GTR 5 Mk, m GTR, m 36
5-Mk	-HKYI	 5 Mk+	, m HKY+I+	, m 29
5-Mk	-GTRI	 5 Mk+	, m GTR+I+	, m 45

Priors on Model Parameters

For the prior on topology, we assumed that all labeled
trees are equally likely. We used an exponential prior
with inverse scale parameter 1.0, Exponential(1.0), for
branch lengths. For stationary state frequencies, we used
a flat Dirichlet prior, Dirichlet(1,1,1,1). For the five nu-
cleotide substitution rate ratios of the GTR model (scaled
to the G-T rate) and the transition/transversion rate ra-
tio of the HKY model, we used Exponential(ln 2) priors.
These put 50% prior probability on rate ratios <1.0. We
used a Uniform(0,50) prior on the shape parameter of the
gamma distribution of rate variation and a Uniform(0,1)
prior on the proportion of invariable sites.

Estimation of the Posterior Probability Distribution

We used Metropolis-coupled MCMC (Metropolis
et al., 1953; Hastings, 1970; Geyer, 1991), as implemented
in MrBayes 3.0 (Huelsenbeck and Ronquist, 2001; Ron-
quist and Huelsenbeck, 2003), to estimate the posterior
probability distribution. The gamma distribution of rate
variation across sites was approximated by a discrete
distribution with four categories, each category being
represented by its mean rate. All chains, including cou-
pled chains in the same run, were started from different,
randomly chosen trees. Starting values for other parame-
ters were set arbitrarily: branch lengths to 0.1, stationary
base frequencies to 0.25, rates in rate sets to 1.0, invariant
proportion to 0.0, and gamma shape to 0.5.

We randomly picked a combination of a parameter
(or block of parameters) and an updating mechanism
in each generation of the chain. The relative probability,
or proposal rate, of picking each parameter–mechanism
combination was determined by a probability factor as-
sociated with the updating mechanism. Assume that a
model contained a tree updated by a mechanism with a
proposal rate of 15.0 and two shape parameters updated
by a mechanism with a proposal rate of 1.0. Then we
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would update the tree with probability 15/17 and each
shape parameter with probability 1/17 in every genera-
tion of the chain.

We used the following Metropolis proposals. Topol-
ogy and branch lengths were updated using the LO-
CAL mechanism (proposal rate 15.0, tuning parame-
ter 2.0∗loge [1.1]; Larget and Simon, 1999), a stochas-
tic TBR mechanism (proposal rate 3.0, tuning param-
eter 2.0∗loge [1.61], extension probability 0.5), and a
branch multiplier (proposal rate 3.0, tuning parameter
2.0∗loge [2.59]). All other mechanisms were assigned a
proposal rate of 1.0. Base frequencies were updated us-
ing a Dirichlet proposal (Dirichlet tuning parameter 300),
rate ratios (transition/transversion rate ratio, GTR rate
ratios scaled to the G-T rate, and partition rate multipli-
ers scaled to the rate of the first partition) were updated
using a uniform proposal within a sliding window (size
1.0), the gamma shape parameter was updated using a
uniform proposal within a sliding window (size 0.5), and
the proportion of invariable sites was updated using a
uniform proposal within a sliding window (size 0.1).

We used four Metropolis-coupled chains with incre-
mental heating, and the heating parameter was set to
0.2. In every generation, we randomly picked two chains
and used a Metropolis mechanism to swap their states
(Huelsenbeck and Ronquist, 2001). For each model, we
ran four different runs of 2,000,000 generations each,
sampling values every 100th generation.

Convergence Monitoring

For the initial determination of burn-in (the number of
generations before apparent stationarity), we examined
the plot of overall model likelihood against generation
of the chain to find the point where the likelihood plot
leveled off and started to fluctuate around a stable value.
To provide additional confirmation of convergence and
appropriate mixing, we compared results from the four
independent runs. We checked that all runs had simi-
lar mean and variance of model likelihood after burn-in.
We also compared posterior distributions and generation
plots for all substitution model parameters, including to-
tal tree length, to check that the runs were producing sim-
ilar marginal posterior distributions and that they were
mixing appropriately over these distributions. We also
compared majority rule consensus trees from the inde-
pendent runs to check that topology and clade credibility
values were similar. Convergence after the initially de-
termined burn-in phase was confirmed in all cases by
these additional tests. Final results were based on the
pooled samples from the stationary phases of the four
independent runs.

Estimation of Model Likelihood

The critical element that must be estimated to calcu-
late Bayes factors is the model likelihood f (X | Mi ). This
likelihood is usually impossible to evaluate analytically
when the parameter space is large, but it can be estimated
in a number of ways. In phylogenetics, different estima-

tors have been used to calculate Bayes factors for compar-
ing models. Suchard et al. (2001) used a method called the
Savage–Dickey ratio (Verdinelli and Wasserman, 1995),
which is restricted to comparing nested models. Aris-
Brosou and Yang (2002) used a controversial method de-
scribed by Aitkin (1991) that uses the arithmetic mean
of the likelihood values sampled from the posterior dis-
tribution. We used the estimator proposed by Newton
and Raftery (1994), which is the harmonic mean of the
likelihood values sampled from the stationary phase of
the MCMC run. This estimator is given by

f̂ (X | Mi ) =
[

1
n

n∑
j=1

f (X | τ j , ν j , θ j )−1
]−1

,

where f (X | τ j , v j , θ j ) is the likelihood for a sample j
out of a total of n from the joint posterior distribution.
The harmonic mean estimator is less sensitive to the occa-
sional occurrence of high likelihood values and more sen-
sitive to low values than the arithmetic mean estimator of
Aitkin (1991). Because high extremes are more likely to be
a problem than low extremes, the harmonic mean should
perform better than the arithmetic mean. Although some
workers have questioned the general stability of the har-
monic mean estimator, it should be sufficiently accurate
for comparison of models with distinctly different model
likelihoods given that the sample from the posterior dis-
tribution is large ( Newton and Raftery, 1994; Gamerman,
1997). The value of the harmonic mean estimator was
calculated using MrBayes, scaling all likelihood values
to the smallest value sampled and taking full advantage
of the numerical range of double-precision floating point
values.

RESULTS

Computational Efficiency

Because many of the proposals changed parameters
that affected only one or a few of the data partitions in a
complex model, the computational time per MCMC cy-
cle was shorter in partitioned analyses (Table 4). For all
but the simplest model (Mk-JC), analyzing the data in
five instead of two partitions provided a drastic increase
in computational speed per generation, as expected. For
example, the average computing speed was 20.0 genera-
tions/sec for the 45-parameter model 5-Mk	-GTRI	 but
only 11.2 generations/sec for the 12-parameter model 2-
Mk	-GTRI	. Thus, analysis under the more parameter-
rich model was nearly twice as fast as that under the
less parameter-rich model, despite an almost fourfold
increase in the number of parameters. Another strik-
ing effect is that allowing gamma-distributed rate vari-
ation across sites slows down the analysis consider-
ably because the chain is integrating out the gamma
distribution using the discrete four-category approxi-
mation, essentially quadrupling the number of compu-
tational operations needed to evaluate the likelihood
ratio.
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TABLE 4. Effect of model complexity on computational speed and time to apparent stationarity. All values are the average of four independent
analyses on a 1.0 GHz AMD Athlon processor running Linux. Time to convergence (burn-in) was estimated as the number of generations required
before the overall model likelihood reached apparent stationarity.

No. free Speed Update Time to
Model parameters (generations/sec) cycle (sec) convergence (sec)a

Two-partition models
2-Mk-JC 1 51.0 0.43 206 (157, 254)b

2-Mk	-HKYI	 8 12.2 2.21 984 (820, 1,148)
2-Mk-GTR 9 47.0 0.51 553 (277, 851)c

2-Mk	-GTRI	 12 11.2 2.41 2,410 (1,964, 3,125)
Five-partition models

5-Mk-JC 4 51.3 0.43 171 (136, 214)
5-Mk	-HKYI	 29 20.3 1.92 443 (394, 493)
5-Mk-GTR 36 60.1 0.50 237 (150, 333)
5-Mk	-GTRI	 45 20.0 1.95 1,038 (650, 1,700)

aValues are mean (min, max) for the four independent runs.
bBased on only two runs; the remaining runs took 8,600 and 10,400 sec to converge.
cBased on three runs; the last run took 8,300 sec to converge.

A more relevant comparison than computational time
per generation is the update cycle, i.e., the computational
time required for a single update of all model parameters
or parameter blocks. Because update mechanisms were
selected randomly in the MCMC implementation, the
actual update cycle for any parameter could vary con-
siderably over short time spans. The times given here
are the expectations over long runs (Table 4). Going from
two to five data partitions leads to a slight but notice-
able decrease in the update cycle in the five-partition
models. This decrease could be due to improved caching
efficiency because the small number of data required
for many updates in the five-partition models might in-
crease the probability of cache hits, leading to the proces-
sor accessing the data much faster. Without such effects,
the update cycle would presumably have been similar
regardless of the number of partitions. Again, the
most striking effect is associated with allowing gamma-
distributed rates across sites (Table 4).

Even though the update cycle remains constant, the
increase in dimensionality of the posterior probability
distribution might cause prolonged burn-in periods for
the more complex models. However, this effect was
not observed. On the contrary, the five-partition mod-
els reached apparent stationarity more quickly than did
the corresponding two-partition models (Table 4). For in-
stance, apparent stationarity occurred on average more
than twice as fast in the 45-parameter 5-Mk	-GTRI	
model as in the 12-parameter 2-Mk	-GTRI	 model. Fur-
thermore, convergence was unpredictable for the sim-
plest models. For the 2-Mk-JC model, only two of four
runs converged in a time period comparable to that of
other models; the remaining two runs took 40–50 times
longer to converge (Fig. 1). The slightly more compli-
cated 5-Mk-JC model had one of four runs with a 20-time
longer convergence than the others.

Morphology Versus DNA

For the comparison between the morphological and
nucleotide data, we considered analyses under three

models: 1-Mk	 (morphology only), 1-GTRI	 (DNA
only), and 2-Mk	-GTRI	 (all data combined).

Results from analysis of the morphological data un-
der the 1-Mk	 model (Fig. 2a) are similar to those ob-
tained from standard parsimony analysis of the same
data (not shown), but they conform even more closely
to the results from bootstrapped implied-weights par-
simony analysis (constant of concavity, k = 2) (Fig. 2b).
From this implied-weight analysis, the Bayesian results
differ only in being slightly more resolved and having
support values that are generally higher, especially for
some of the weaker groupings in the implied-weights
analysis. This observation supports the intuitive anal-
ogy between homoplasy-weighted parsimony analysis
and parametric analysis allowing rate variation across
sites.

Analysis of the molecular data under the 1-GTRI	
model confirms some morphological results but sug-
gests different groupings in many cases (Fig. 2c). There
are two areas of particularly strong conflict. First, the
molecular data suggest that the woody non-oak gallers
(Diplolepis, Pediaspis, and Eschatocerus) form basal lin-
eages in the Cynipidae instead of being closely related

FIGURE 1. Generation plot of the marginal log likelihood,
f (X | τ, v, θ ), for the combined data analyzed under the 2-Mk-JC model.
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FIGURE 2. Comparison of the phylogenetic information in the morphological and molecular partitions and their influence on the combined
analysis. Groups discussed in the text are indicated on the trees. A bold branch indicates a posterior probability of 1.0. IR group = inquilines
+ Aylacini Rosaceae gallers. (a) Majority-rule consensus tree based on the morphological data analyzed under the 1-Mk	 model. (b) Bootstrap
consensus tree from an implied-weights parsimony analysis (constant of concavity, k = 2) of the morphological data. (c) Majority-rule consensus
tree based on the molecular data analyzed under the 1-GTRI	 model. (d) Majority-rule consensus tree based on the combined data analyzed
under the 2-Mk	-GTRI	 model.
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to the oak gallers (Plagiotrochus, Andricus, Neuroterus,
and Biorhiza), as indicated by the morphological data
(Figs. 2a, 2b). Second, the molecular data suggest that the
oak inquilines (Synergus and Ceroptres) are not related to
the rose inquilines (Periclistus and Synophromorpha) and
the Aylacini Rosaceae gallers (Diastrophus, Gonaspis, and
Xestophanes) (Fig. 2c), whereas the morphological data
strongly support the monophyly of this entire assem-
blage, referred to here as the IR group (Inquilines + Ay-
lacini Rosaceae gallers). In these cases, one can possibly
argue that the morphological result is more likely than
the molecular result (see Discussion). In most other cases
where the molecules and morphology conflict, however,
the molecular result is much more reasonable. For in-
stance, the grouping of Phanacis and Timaspis is more in
line with previous expectations and the results of stan-
dard parsimony analysis of morphological data (Lilje-
blad and Ronquist, 1998) than is the 1-Mk	 result; the
placement of Liposthenes with other Lamiaceae gallers,
such as Panteliella and Rhodus, appears more likely than
the placement of this genus basal to the IR group as sug-
gested by morphology; and the grouping of all poppy
gallers (Aylax, Iraella, and Barbotinia) in a single clade is
not in strong conflict with morphology and is in line with
the observation that gall wasps in general are extremely
conservative in their host-plant preferences (Ronquist
and Liljeblad, 2001).

In the results of the combined analysis (Fig. 2d), there
is ample evidence of influence from both the morpholog-
ical (166 characters) and the molecular (3,080 bp) data. In
many cases, the two data sets support each other, such
as the increased support for the Liposthenes clade (0.58
with morphology, <0.50 with molecules, 0.76 in com-
bined analysis), the Aulacidea–Isocolus clade (0.98 with
morphology, 0.52 with molecules, 1.00 in combined anal-
ysis), and the oak gallers (Plagiotrochus, Andricus, Neu-
roterus, and Biorhiza; 0.96 with morphology, 0.94 with
molecules, 1.00 in combined analysis). In many cases of
conflict, the molecular result prevails, as expected. How-
ever, the morphological data are strong enough to change
the position of the oak inquilines (Synergus and Cerop-
tres), such that the IR group becomes monophyletic in
the combined analysis. This is quite a dramatic change
compared with the molecular result (Fig. 2c).

Are Partitioned Models Better?

The estimated model likelihoods indicate a dramatic
increase in model fit when going from two-partition
models to their five-partition equivalents. The increase
ranged from almost 600 to >900 log likelihood units (Ta-
bles 5, 6). However, other model components were even
more important than allowing across-partition hetero-
geneity. Allowing within-partition rate variation was by
far the most important model component (accounting for
an increase of roughly 3,000 log likelihood units in the
two available comparisons; Table 6). Allowing rate vari-
ation across molecular partitions but not within them (5-
Mk-GTR) was far less successful than allowing rate varia-
tion within a single molecular partition (2-Mk	-GTRI	);

TABLE 5. Estimated model likelihood (predictive likelihood),
f̂ (X | Mi ), for the different models.

Model No. parameters loge f̂ (X | Mi )

Two-partition models
2-Mk-JC 1 −31,634
2-Mk	-HKYI	 8 −27,396
2-Mk-GTR 9 −30,289
2-Mk	-GTRI	 12 −27,121

Five-partition models
5-Mk-JC 4 −30,962
5-Mk	-HKYI	 29 −26,682
5-Mk-GTR 36 −29,377
5-Mk	-GTRI	 45 −26,543

the difference was more than 2,000 log likelihood units
in favor of the simpler model (Table 5). Allowing more
realistic substitution models was also important, but the
increase was dramatic only when going from JC to GTR
(1,345 or 1,585 log likelihood units; Table 6), not when
going from HKY to GTR (139 or 278 log likelihood units;
Table 6), indicating that accounting for unequal base fre-
quencies and unequal transition and transversion rates
was more important than allowing all six substitution
types to have their unique rate.

Do Complex Models Have Increased Topological Variance?

Complex models are associated with more topologi-
cal uncertainty than are simple models. This is clearly
seen when looking at the 95% credible sets of trees, i.e.,
the set obtained by starting with the sampled tree hav-
ing the highest posterior probability and then adding
trees in order of decreasing probability until the cumula-
tive probability is 0.95. For instance, the simplest model
(2-Mk-JC) had only three trees in its 95% credible set,
whereas the most complex model (5-Mk	-GTRI	) had
472 (Table 7). The most important factor by far is whether
or not within-partition rate variation is accounted for in
the model. Models allowing rate variation within par-
titions (8–45 parameters) had 236–472 trees in their 95%
credible sets, whereas models that did not allow rate vari-
ation (1–36 parameters) had only 1–31 trees. Even if this
effect is controlled for, however, the introduction of more
parameters usually seems to increase topological uncer-
tainty. For instance, the 5-Mk-JC model had 11 trees in its
95% credible set whereas the 5-Mk-GTR model had 31,
and the 5-Mk	-HKYI	 model had 389 trees whereas the
5-Mk	-GTRI	 model had 472.

For models with rate variation, there also seems to be
a positive correlation between topological uncertainty
and tree length uncertainty (Table 7). The normalized
SD of tree length (the SD divided by the mean) was 0.083
for the most complex of the rate-variation models (5-
Mk	-GTRI	) but only 0.041 for the simplest (2-Mk	-
HKYI	). There was also a tendency for more complex
rate-variation models to have trees with longer branches.
Models without rate variation showed no differences ei-
ther in tree length or in tree length variation.

The majority rule consensus trees obtained under the
eight different models were relatively similar (Figs. 3, 4).
Of 29 possible clades, 18 were supported in all consensus
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TABLE 6. Effect of various model components on model likelihood.

Model likelihood Bayes factor

Model component Model comparison (M1/M 0) loge f̂ (X | M1) loge f̂ (X | M0) loge B10 2loge B10

Data partition 5-Mk-JC/2-Mk-JC −30,962 −31,634 672 1,344
5-Mk	-HKYI	/2-Mk	-HKYI	 −26,682 −27,396 714 1,428
5-Mk-GTR/2-Mk-GTR −29,377 −30,289 912 1,824
5-Mk	-GTRI	/2-Mk	-GTRI	 −26,543 −27,121 578 1,156

Rate variation 2-Mk	-GTRI	/2-Mk-GTR −27,121 −30,289 3,168 6,336
5-Mk	-GTRI	/2-Mk-GTR −26,543 −29,377 2,834 5,668

Substitution model 2-Mk-GTR/2-Mk-JC −30,289 −31,634 1,345 2,690
5-Mk-GTR/5-Mk-JC −29,377 −30,962 1,585 3,170

Substitution rates 2-Mk	-GTRI	/2-Mk	-HKYI	 −27,121 −27,396 275 550
5-Mk	-GTRI	/2-Mk	-HKYI	 −26,543 −26,682 139 278

trees. An additional five were supported in nearly all
trees, and there was more variation in the remaining
six. The trees obtained under models allowing within-
partition rate variation were identical with two excep-
tions: the 5-Mk	-GTRI	 tree (Fig. 4d) was unusual in
grouping Parnips with Paramblynotus instead of with the
Cynipidae, and the 2-Mk	-GTRI	 tree was unusual in
placing the Phanacis–Timaspis clade more basally (Fig. 3d)
than the other rate-variation trees did. Trees obtained un-
der models with equal rates within partitions were more
heterogeneous, differing among themselves in the place-
ment of the poppy galler clade (Iraella, Barbotinia, and Ay-
lax), the Phanacis–Timaspis clade, and the inquilines Syn-
ergus and Ceroptres (Figs. 3a, 3c, 4a, 4c). A characteristic
feature of the equal-rates models was that they resolved
the woody non-oak galling clade as (Pediaspis(Diplolepis,
Eschatocerus)), partly supporting the morphology tree,
whereas the rate-variation models resolved the clade as
(Eschatocerus(Diplolepis, Pediaspis)). Except for this differ-
ence, the complex model trees were more congruent with
the morphology tree than were the trees from simpler
models (Figs. 2–4), even though many differences still
persisted.

Differences between model extremes were quite strik-
ing for some taxa (Figs. 3, 4). For instance, Synergus

TABLE 7. Effect of model structure on tree uncertainty. Topological uncertainty increases when model complexity grows, as indicated by
the increasing number of trees contained in the 95% and 99% credible sets and the decreasing average clade probability in the consensus tree.
However, allowing rate variation has a much stronger effect than does the total number of parameters per se. Tree length uncertainty is positively
correlated with increased uncertainty concerning tree topology for models allowing within-partition rate variation.

Credible tree sets Tree length

Model No. Parameters 95% 99% Mean supporta Mean NSDb

Two-partition models
2-Mk-JC 1 3 6 0.971 1.935 0.016
2-Mk	-HKYI	 8 236 797 0.953 3.727 0.041
2-Mk-GTR 9 1 9 0.994 1.923 0.016
2-Mk	-GTRI	 12 378 1,032 0.946 2.835 0.033

Five-partition models
5-Mk-JC 4 11 35 0.920 1.920 0.016
5-Mk	-HKYI	 29 389 1,032 0.941 5.060 0.060
5-Mk-GTR 36 31 65 0.949 1.854 0.017
5-Mk	-GTRI	 45 472 1,223 0.936 7.324 0.083

aArithmetic mean of the posterior clade probabilities on the majority-rule consensus tree or, when this tree was not fully resolved (the 5-Mk-JC model), on a fully
resolved tree based on the majority-rule consensus but with compatible groups included.

bNormalized SD.

groups with Ceroptres in a basal clade supported by a
posterior probability of 1.0 under the simplest model (2-
Mk-JC; Fig. 3a). In contrast, the posterior probability for
Synergus + Ceroptres was only 0.02 under the most com-
plex model (5-Mk	-GTRI	; Fig. 4d), which placed both
genera within a terminal IR clade supported by a pos-
terior probability of 1.0. Under the simplest model, the
posterior probability of the IR group being monophyletic
was <0.00005. However, such extreme topological dif-
ferences were uncommon among the more complex
models.

Sensitivity to Superfluous Parameters

Among the models we examined, we had difficul-
ties finding superfluous parameters, i.e., parameters for
which the data were weak and the posterior distribution
mainly reflected the prior. The parameters that came clos-
est were the gamma shape and proportion of invariant
sites for the two protein-coding nuclear gene fragments
(EF1α and LWRh) in the five-partition models (5-Mk	-
HKYI	 and 5-Mk	-GTRI	). These fragments were short,
many sites were constant, and there was little evidence
of rate variation in the remaining sites. These factors
led to a posterior probability distribution with a den-
sity throughout most of the parameter space for both
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FIGURE 3. Majority-rule consensus trees based on the combined data analyzed under two-partition models. Groups discussed in the text
are indicated on the trees. A bold branch indicates a posterior probability of 1.0. (a) 2-Mk-JC model (one free substitution model parameter).
(b) 2-Mk	-HKYI	 model (eight parameters). (c) 2-Mk-GTR model (nine parameters). (d) 2-Mk	-GTRI	 model (12 parameters).
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FIGURE 4. Majority-rule consensus trees based on the combined data analyzed under five-partition models. Groups discussed in the text
are indicated on the trees. A bold branch indicates a posterior probability of 1.0. (a) 5-Mk-JC model (four free substitution model parameters).
(b) 5-Mk	-HKYI	 model (29 parameters). (c) 5-Mk-GTR model (36 parameters). (d) 5-Mk	-GTRI	 model (45 parameters).
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FIGURE 5. Generation plots and correlations of some of the parameters in the 5-Mk	-GTRI	 model. (a) Proportion of invariant sites (p) for
the COI partition. (b) Proportion of invariant sites (p) for the LWRh partition. (c) Gamma shape (α) for the COI partition. (d) Gamma shape
(α) for the LWRh partition. (e) Correlation plot between (α) and p for the COI partition. (f) Correlation plot between α and p for the LWRh
partition.

the proportion of invariants and gamma shape (Figs. 5b,
5d). This result was in stark contrast with the focused
distributions seen for the other two genes in the five-
partition models or for all genes combined in the two-
partition models. When examined closely, the diffuse
distributions appear to be due to a concentration of the
posterior density to two opposite combinations of pa-
rameter values: either the proportion of invariant sites
is high and the rate variation moderate (high α), or the
proportion of invariant sites is low and the rate varia-
tion considerable (low α). The correlation between the
parameters is obvious when comparing the correlation

plots between proportion of invariant sites and gamma
shape for the COI and LWRh partitions (Figs. 5e, 5f). The
marginal distributions of gamma shape and proportion
of invariant sites show that the posterior distribution is
highly peaked in the region with a high proportion of
invariant sites and moderate rate variation (high α) even
though there is a significant tail expanding into the re-
gion with the reverse parameter combination (Fig. 6).
The long tails in the marginal posterior distributions led
to slower mixing than typically observed, although the
posterior distribution appeared to be adequately covered
over the entire length of the run. The slower mixing did
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FIGURE 6. Marginal posterior distributions of two parameters of
the 5-Mk	-GTRI	 model, for which the mixing of the chain is relatively
slow. (a) Gamma shape (α) for the LWRh partition. (b) Proportion of
invariant sites (p) for the LWRh partition.

not appear to affect convergence and mixing for other
parameters. For instance, the marginal posterior distri-
butions of gamma shape and proportion of invariants
for the other gene fragments (COI and 28S) remained fo-
cused, and the chain mixed rapidly over them (Figs. 5a,
5c). Apparent convergence of overall model likelihood
also remained unaffected: the number of update cycles
to convergence was roughly the same as those for the
simpler five-partition models (cf. Table 4).

We also found some examples of parameter sets for
which the marginal posterior distributions broadly co-
incided with a submodel. The best examples were the
six substitution rates of the GTR model for the nuclear
protein-coding gene fragments in the most complex five-
partition model. For both partitions, the posterior dis-
tribution suggested that the rates fell into two distinct

TABLE 8. Bayes factor comparisons between all models. Entries are twice the log of the Bayes factor in the comparison between models M 0

and M1 (2loge B10). The column models are arbitrarily labeled M 0; thus, positive values indicate support for the row model over the column
model. Underlined entries indicate comparisons where the less parameter-rich model is favored by the Bayes factor.

2-Mk-JC 2-Mk	-HKYI	 2-Mk-GTR 2-Mk	-GTRI	 5-Mk-JC 5-Mk	-HKYI	 5-Mk-GTR 5-Mk	-GTRI	

2-Mk-JC 0
2-Mk	-HKYI	 8,477 0
2-Mk-GTR 2,691 −5,786 0
2-Mk	-GTRI	 9,026 549 6,335 0
5-Mk-JC 1,344 −7,133 −1,347 −7,682 0
5-Mk	-HKYI	 9,905 1,428 7,214 878 8,560 0
5-Mk-GTR 4,515 −3,962 1,824 −4,512 3,170 −5,390 0
5-Mk	-GTRI	 10,183 1,706 7,493 1,157 8,839 279 5,669 0

classes, transitions and transversions, with only moder-
ate variation within classes (Fig. 7). Thus, these parti-
tions might have been more appropriately analyzed us-
ing an HKY model. However, the use of the complex
GTR model did not seem to cause problems with over-
all convergence or mixing of other model parameters.
Furthermore, going from a five-partition HKY to a five-
partition GTR model had relatively little influence on tree
uncertainty (cf. Table 7).

Avoiding Overparameterization

In general, Bayes factor comparisons favored the
model with the highest number of parameters (Table 8),
but there were two exceptions. The second most
parameter-rich model (5-Mk-GTR), having 36 parame-
ters, lost to both of the two-partition models allowing
within-partition rate variation, one with eight parame-
ters (2-Mk	-HKYI	) and the other with 12 parameters
(2-Mk	-GTRI	). Again, this illustrates the importance
of modeling rate variation (cf. Table 6) but also shows
that Bayesian model selection can help the investigator
avoid an inappropriate sequence of parameter addition.
However, in all comparisons of nested models, the more
complex model was favored; twice the log of the Bayes
factor ranged from 279 to 10,183, far above the critical
threshold of 10 required for the Bayes factor to be con-
sidered very strong evidence in favor of the better model
(Table 1). The best model overall (5-Mk	-GTRI	) was
also the most parameter-rich of the models we tried.

To further test whether the Bayes factor might favor
model reduction in some cases, we examined the weakest
parameters in the most complex model. We estimated the
model likelihood for six additional models obtained by
reduction from the 5-Mk	-GTRI	 model: (1) proportion
of invariant sites for the EF1α partition was removed; (2)
gamma shape for the EF1α partition was removed; (3)
proportion of invariant sites for the LWRh partition was
removed; (4) gamma shape for the LWRh partition was
removed; (5) an HKY model was used instead of a GTR
model for the EF1α partition; and (6) an HKY model was
used instead of a GTR model for the LWRh partition.
In all these cases, the model likelihood decreased; the
decrease ranged from 6 to 17 log likelihood units. Thus,
Bayes factor comparisons still provided strong support
(Table 1) for the inclusion of all of these parameters.
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FIGURE 7. Generation plots of the substitution rates for the EF1α partition under the 5-Mk	-GTRI	 model. The rates are given as proportions
of the rate sum. (a, b) The two transition rates, rAG and rCT. (c–f) The four transversion rates, rCG, rAT, rGT, and rAC.

DISCUSSION

Computational Feasibility of Combined Analysis

Our results demonstrate the computational efficiency
of the Bayesian MCMC approach in dealing with com-
posite models for heterogeneous data sets. The update
cycle is virtually unaffected by model partitioning, and
partitioned models reach apparent stationarity faster and
more reliably than do unpartitioned models (Table 4).
The occasional failure of two of the simplest models to
converge rapidly suggests that the shape of the posterior
distribution might be more important than its dimen-
sionality in determining convergence. In other words,
the simplest models seem to be associated with poste-
rior distributions that have a very complex shape, which
occasionally traps the Markov chains on their way to the
region of high posterior density, even though Metropolis
coupling is used to accelerate convergence and escape lo-
cal maxima (Fig. 1). This phenomenon could be coupled

with the low topological variance in the posterior prob-
ability distribution of the simplest models. Adjustments
of the tuning parameters of the MCMC runs may have
sped up convergence for the simplest models, but it is
unlikely that simple fine tuning would have alleviated
the problem completely.

The most complex models included both parameters
with relatively diffuse posterior distributions and pa-
rameter sets whose posteriors nearly coincided with a
submodel. Mixing was slower for parameters with dif-
fuse posterior distributions (Figs. 5b, 5d), but the poste-
rior remained focused and mixing was rapid for other
parameters (Figs. 5a, 5c), suggesting that the Bayesian
MCMC approach is robust to the inclusion of a modest
number of weak parameters in models.

Despite these encouraging results, there must be a limit
to the number of parameters that can be successfully in-
cluded in a model even under Bayesian MCMC analy-
sis. Our preliminary observations from analysis under a
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radically overparameterized model with 12 partitions
and 121 substitution model parameters indicate that this
is indeed the case. Many of the parameters in this model
had diffuse posterior distributions, and the chain did not
reach stationarity or mix rapidly enough over all these
distributions to provide a reasonable sample during the
run length used for the other models (2,000,000 gener-
ations) (Figs. 8a, 8b). The overall likelihood reached ap-
parent stationarity rapidly (Fig. 8c) and the chain seemed
to sample successfully over some marginal posterior dis-
tributions that remained focused (Fig. 8d). However, the
estimates of overall likelihood and the samples of the
focused model parameters should be regarded with cau-
tion in the lack of appropriate indications of convergence
and adequate mixing for the remaining model parame-
ters. The results obtained under this model illustrate well
how important it is to monitor convergence and mixing
for all model parameters; it is not sufficient to look just
at the overall likelihood (Fig. 8c).

Because theoretical considerations predict that the up-
date cycle will be unaffected by model partitioning, we
expect our results concerning computational speed to
apply generally. However, the convergence and mixing
behavior is likely to be influenced by the peculiarities of
each data set and the details of the MCMC run; therefore,

FIGURE 8. MCMC analysis under a radically overparameterized model with 121 free substitution model parameters (12-Mκ	-GTRI	).
(a) Generation plot of the gamma shape parameter (α) for the EF1α partition (first codon positions only). (b) Generation plot of the C-T rate
parameter (rCT) for the COI partition (first codon positions only). (c) Generation plot of the marginal log likelihood, f (X | τ, v, θ ). (d) Generation
plot of α for the COI partition (first codon positions only).

more data are needed before it can be safely concluded
that convergence is generally faster for moderately com-
plex models than for simple models.

Combining Morphology and Molecules

Previously, morphology has been ignored in paramet-
ric inference of phylogeny for several reasons. Most im-
portantly, there has been skepticism directed toward
the appropriateness of probabilistic models for mor-
phological data, and only recently have such models
been considered seriously (Lewis, 2001a; Ronquist and
Huelsenbeck, in prep.). However, the slow progress in
the development of parametric methods for morphol-
ogy may also be attributed to a widely held belief that
morphology would contribute little to parametric infer-
ence of phylogeny. Our results clearly show that this is
not necessarily the case, not even when multigene data
sets are available. The morphological data contributed
<5% of the characters in our data set but still had sig-
nificant influence on the tree from the combined analy-
sis. Of course, the influence of a morphological data set
will depend on its size and the strength of the phyloge-
netic signal in it. Although our data set was fairly large
and did provide strong support for several groupings,
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several parts of the phylogeny were not well resolved,
so this data set is not extremely “clean.” Even some of
the weaker signals in our morphological data, such as the
support for the monophyly of the genus Liposthenes, did
show through in the combined analysis (Fig. 2d), which
suggests that there is generally a good potential for mor-
phological phylogenetic signal to contribute to the result
of a combined statistical analysis.

Although statistical analysis of morphological phy-
logenies is controversial, the difference compared
with parsimony analysis may not be so dramatic in
practice. Our comparisons between parametric and
standard/implied-weights parsimony analysis of the
same morphological data actually indicate that the
two methods tend to give similar phylogenetic results
(Figs. 2a, 2b).

As molecular data sets increase in size, morphological
data will have less and less influence on the results of a
combined analysis. However, conflicts between morpho-
logical and molecular signal could still contribute impor-
tant information, either about shortcomings in molecu-
lar models or about interesting aspects of morphological
evolution. Furthermore, morphological data will remain
important for placing fossils and thus for dating split-
ting events in phylogenies. We hope that these reasons
are sufficient to make combined analysis of morphology
and molecules, where applicable, a common practice in
statistical phylogenetics.

Recognizing Across-Partition Heterogeneity
in Molecular Data

Our results indicate that evolutionary models for
multigene data sets can be improved considerably by
recognizing across-partition heterogeneity in model pa-
rameters such as overall rate, individual substitution
rates, base frequencies, and gamma shape. This improve-
ment in fit associated with partitioned models has been
noted before in the ML framework (Yang, 1996b; DeBry,
1999; Pupko et al., 2002). However, even though across-
partition heterogeneity is significant, other model com-
ponents seem to be even more important, particularly
those that deal with within-partition rate variation (for
similar conclusions, see Wakely, 1994; Sullivan et al.,
1995; Yang, 1996a) and some of the substitution rate and
base frequency parameters. Until these model compo-
nents have been accounted for, it might not be worth-
while considering partitioned models. We suspect that
these conclusions are valid for most of the combined
data sets used in phylogenetic analysis, but only explicit
model comparison for each data set can guarantee that
it conforms to the general pattern.

Priors in Complex Models

So far, there has been little discussion about priors in
Bayesian phylogenetic inference. Rather than noninfor-
mative, many of the commonly used priors have been
counterinformative in the sense that they put a lot of
probability on unlikely parameter values. For instance,
most workers would consider a tree with any branch

length above 1.0 as suspect. Across a branch of that
length, we would expect one change in every charac-
ter and such massive amounts of change would make
it difficult to even recognize homology between molecu-
lar sequences. However, it has been common to associate
branch lengths with uniform prior distributions from 0 to
a large, arbitrary cutoff value. Such priors place consid-
erable emphasis on trees with long branches. Consider
for instance a uniform(0,10) prior on branch lengths for
a 30-taxon problem with 2 ∗ 30 − 3 = 57 branches: such
a prior places less than (1/10)57 = 10−57 probability on
trees with all branches shorter than 1.0. When the data are
strong enough, even such an extreme prior will have neg-
ligible impact on the posterior distribution. One could
even argue that if the data overrode an extreme prior,
it would provide additional evidence for the inference
based on the posterior distribution.

However, selecting appropriate priors becomes
more important when dealing with complex models.
Parameter-rich models inevitably contain fewer data per
parameter and it may be difficult to exclude all param-
eters for which the posterior distribution will reflect the
prior to some extent. If appropriate priors are chosen,
one can hope that weak-data parameters do not cause
problems with the rest of the analysis, but an extreme
prior showing through would destroy the credibility of
the results. As expected, pilot runs conducted when this
study was initiated showed several cases where counter-
informative or extreme priors affected posterior distribu-
tions. This was particularly the case for uniform priors
on branch lengths and uniform priors on substitution
rate ratios of the GTR model. For this reason, we used
exponential priors on both of these parameters in the fi-
nal runs, such that more prior probability was put on
moderate parameter values.

Thus, it is important to avoid extreme priors and to
monitor convergence and mixing for all model parame-
ters to discover potential problems with weak data when
analyzing complex models using the Bayesian MCMC
approach.

Model Sensitivity and Topological Incongruence

Recent computer simulations have shown that with
certain types of extreme model deviations, Bayesian in-
ference can result in excessively high posterior probabil-
ities for clades (Suzuki et al., 2002). The incongruence be-
tween the trees obtained under different models in our
study (Figs. 3, 4) also illustrates the model sensitivity
of the Bayesian approach. However, the incongruence
only affected a small number of taxa; about two thirds of
the clades remained constant under all models. Further-
more, model sensitivity of the topology decreased, very
high posterior clade probabilities became less common,
and conflict between morphology and molecules was
weakened as model complexity increased. It is a matter
of speculation whether even more complex models, for
instance allowing process heterogeneity across the tree,
might continue this trend, but the Bayesian MCMC ap-
proach certainly seems to encourage fruitful exploration
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of this question in the future. In any case, preliminary
simulation results and observations from other data sets
suggest that there is indeed a general tendency for over-
simplified models to be associated with excessive credi-
bility in topologies that may not be correct.

A much-debated issue is whether different types of
data should be combined in the first place (e.g., de
Queiroz et al., 1995), and a number of tests have been
used to address this question (Huelsenbeck and Bull,
1996; Cunningham, 1997; Barker and Lutzoni, 2002;
Buckley et al., 2002; Dowton and Austin, 2002). A Bayes
factor test of combinability is a straightforward exten-
sion of the partitioning techniques used here. The inte-
grated likelihood of a model in which the morphological
and molecular partition had unlinked topologies is com-
pared with that of a model in which these partitions had
linked topologies but unlinked branch lengths. The only
new component needed for this type of analysis is an
MCMC sampler that will change a topology with two
independent sets of branch lengths.

As long as we do not know whether current models
are missing important components, however, it is diffi-
cult to provide an appropriate answer to the combinabil-
ity question. In the context of the models explored here,
it seems likely that a formal Bayes factor comparison
would suggest that our morphological and molecular
data partitions evolved on different topologies. Never-
theless, we would be inclined to interpret this suggestion
as the result of model imperfection rather than true mis-
match between morphological and molecular trees. The
evolutionary explanations for topological incongruence
seem relatively far-fetched in comparison with the possi-
ble model components that might be missing. Examples
of the latter include morphological convergence, which
might explain why morphology groups the two clades
of gall inducers on woody hosts (the oak gallers and the
woody non-oak gallers) but the molecules do not, and
molecular process heterogeneity across the tree, which
might explain why the three longest terminal branches
(the woody non-oak gallers) appear basally in the molec-
ular tree but not in the morphological tree. Potentially,
both of these hypotheses can be addressed with appro-
priate stochastic models. Until this is done, it seems
premature to consider explanations involving processes
causing topological incongruence.

Bayesian Model Selection

Thus far, model selection in statistical phylogenetics
has usually been based on criteria comparing ML es-
timates (for exceptions, see Suchard et al., 2001; Aris-
Brosou and Yang, 2002; Bollback, 2002). Our results
illustrate several advantages of adopting a Bayesian
approach to model comparison instead. The comparison
is based on the model likelihood, which can be conve-
niently estimated using the harmonic mean of the likeli-
hood values from the MCMC samples. Despite the warn-
ings issued in the literature concerning the sensitivity of
the harmonic estimator, we observed the estimate to be
reasonably stable among independent MCMC runs. The

maximum range of the estimate among the four inde-
pendent runs for any of the 18 different models analyzed
was seven log likelihood units, which was negligible in
comparison with the differences among models.

Unlike standard likelihood ratio tests, Bayesian model
comparison integrates over uncertainty in model param-
eters. This integration makes the result more generally
valid because it does not depend on a single topology or
a particular set of ML point estimates of model parame-
ters. An additional advantage of the Bayesian approach
is that it allows comparison of nonnested models, unlike
likelihood ratio tests.

Our results show that Bayesian model comparison can
favor simple models over much more complicated ones.
In the most extreme example, an 8-parameter model
(2-MkG-HKYIG) was preferred over a 36-parameter
model (5-Mk-GTR). Preference for a simpler model only
occurred in comparisons between nonnested models
among the results reported here (Table 8).

It is difficult to answer the general question of whether
Bayesian model selection strikes a reasonable balance be-
tween model complexity and estimation error. Among
the models we tried, the best one was also the most
parameter rich. It was difficult to find components in
this model (5-Mk	-GTRI	) that were not well justified.
A couple of parameters had diffuse or strongly skewed
marginal posterior distributions, i.e., the gamma shape
and the proportion of invariants for the two small nuclear
protein-coding gene fragments (EF1α and LWRh), and
some parameter sets had posterior distributions largely
coinciding with a submodel, i.e., the substitution rates of
the GTR model for the same gene fragments. However,
the model likelihood decreased when any of these pa-
rameters were excluded from the model, indicating that
they were important. Albeit the decrease seemed small
in relation to the total model likelihood, it was still suffi-
cient to indicate strong support for the inclusion of these
parameters (cf. Table 1). We experienced problems with
convergence and mixing in models that appeared to be
radically overparameterized and are therefore not in a
position to say whether Bayesian model selection crite-
ria would have favored exclusion of some parameters
from these models. Practical problems of obtaining con-
vergence and mixing may turn out to be a more severe
constraint on model complexity than are Bayesian model
selection criteria per se.

We are confident that likelihood ratio tests would have
given results similar to those of the Bayesian selection cri-
teria for the nested model comparisons. Standard hLRTs,
the AIC, and the BIC applied to the four individual
molecular partitions all suggested models for each parti-
tion similar or identical to the ones in the 5-Mk	-GTRI	
model (unpubl. data). Adding ML values across parti-
tions and estimating the morphology partition ML us-
ing extremely long MCMC runs indicated that apply-
ing any of these selection criteria to the combined data
and the range of models examined here would have re-
sulted in the same preferred model as did the Bayesian
approach. It seems likely that this will be the general
pattern: Bayesian and likelihood approaches will give
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similar results. Thus, in practice the main advantage of
the Bayesian model selection approach is its computa-
tional convenience and its applicability to all types of
model comparisons.

Even though Bayes factors provide good orientation
tools in the selection among models, many aspects of
model choice still will have to depend on the judgment
of the investigator. The range of models to be tested must
be determined by the investigator, but it is difficult to
avoid some arbitrariness in this step. For instance, we
decided to test models in which the partitions corre-
sponded to genes, but other ways of partitioning the data
might have been considered, such as lumping the three
protein-coding genes and then dividing these sites into
two or three partitions based on codon position. Alterna-
tively, we could have considered codon models instead
of single-nucleotide models for the protein-coding genes.
One of the most exciting features of the Bayesian ap-
proach is that it allows investigators to examine a larger
set of models than has been possible previously, and
one can foresee future Bayesian implementations that
systematically walk through a large space of predefined
models either in sequences of runs on individual models
or in runs simultaneously averaging across all available
models (Suchard et al., 2001).

Phylogeny and Evolution of Gall Wasps

In many ways, the combined analyses presented here
support previous conclusions concerning the phylogeny
and evolution of gall wasps based purely on morpholog-
ical data (Ronquist, 1994; Liljeblad and Ronquist, 1998;
Ronquist and Liljeblad, 2001). For instance, these data
confirm the rarity of host-plant shifts, the presence of
three unrelated Asteraceae galling clades (Aulacidea +
Isocolus, Antistrophus, and Phanacis + Timaspis), the dis-
tinctness of the Diastrophus lineage from other gallers of
woody host plants, and the close relationship between
the Aylacini Rosaceae gallers and the inquilines (the IR
clade).

However, there are also two major conclusions from
previous work that are not upheld in this analysis. First,
the inquilines do not form a monophyletic group; in-
stead, the current results suggest that the IR clade has
the inquilines as basal lineages and the gallers (Diastro-
phus + Gonaspis and Xestophanes) nested deeply inside.
Although this set of relationships is certainly possible,
it would imply a rather complicated history of shifts
between gall induction and inquilinism within a small
cynipid subclade, which is unlikely given that there has
not been a single shift between these life strategies in
other parts of the gall-wasp phylogeny. The result is also
surprising in view of the fact that the inquilines form one
of the most well-supported clades in the morphological
analysis (Figs. 2a, 2b).

The second surprising result is the grouping of three
gallers of woody non-oak hosts (Pediaspis, Diplolepis, and
Eschatocerus) outside the rest of the Cynipidae (Figs. 2–4).
These genera have traditionally been regarded as being
close to the oak gallers (e.g., Kinsey, 1920; Weidner, 1968),

and this conclusion has been supported by morphologi-
cal data, albeit not as strongly as inquiline monophyly. It
is of course possible that the morphological result is due
to convergence among gall inducers attacking woody
host plants and that the woody non-oak gallers are in-
deed basal in the Cynipidae phylogeny, as suggested in
the present analysis. However these three terminal taxa
also have the longest terminal branches in the molecular
phylogeny (Fig. 2c), which might indicate problems in
the analysis of the molecular data.

These and other questions pertaining to gall-wasp
phylogeny and evolution will be examined in more de-
tail elsewhere in the context of a phylogenetic analysis
based on a larger taxon sample (Nylander et al., in prep.).
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